Про деякi новi критерiї нескiнченної диференцiйовностi перiодичних функцiй

The set of D1 of infinitely differentiable periodic functions is studied in terms of generalized f derivatives defined by a pair f = ( f1, f2) of sequences f1 and f2. It is established that every function F from the set D1 has at least one such derivative whose parameters f1 and f2 decrease faster t...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Authors: Степанець, О. I., Сердюк, А.С., Шидлiч, А.Л.
Format: Article
Language:Ukrainian
Published: Видавничий дім "Академперіодика" НАН України 2008
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/3853
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Про деякi новi критерiї нескiнченної диференцiйовностi перiодичних функцiй / О. I. Степанець, А.С. Сердюк, А.Л. Шидлiч // Доп. НАН України. — 2008. — № 1. — С. 22-26. — Бібліогр.: 3 назв. — укp.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The set of D1 of infinitely differentiable periodic functions is studied in terms of generalized f derivatives defined by a pair f = ( f1, f2) of sequences f1 and f2. It is established that every function F from the set D1 has at least one such derivative whose parameters f1 and f2 decrease faster than any power function. For an arbitrary function from D1 different from a trigonometric polynomial, there exists a pair having the parameters f1 and f2 with the same properties, for which the f derivative already does not exist. On the basis of the proved statements, a number of criteria for a function to belong to the set D1 is given.
ISSN:1025-6415