Об одном классе модулей над групповыми кольцами локально разрешимых групп с условием min−nnd
Досліджено RG-модуль A такий, що R — цілісне кільце, група G локально розв'язна, CG(A)=1, фактормодуль A/CA(G) не є нетеровим R-модулем та система всіх підгруп H≤G, для яких фактормодулі A/CA(H) не є нетеровими R-модулями, задовольняє умову мінімальності. Ця умова називається умовою min−nnd. От...
Збережено в:
| Опубліковано в: : | Доповіді НАН України |
|---|---|
| Дата: | 2011 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2011
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/44165 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Об одном классе модулей над групповыми кольцами локально разрешимых групп с условием min−nnd / О.Ю. Дашкова // Доп. НАН України. — 2011. — № 12. — С. 13-17. — Бібліогр.: 7 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Досліджено RG-модуль A такий, що R — цілісне кільце, група G локально розв'язна, CG(A)=1, фактормодуль A/CA(G) не є нетеровим R-модулем та система всіх підгруп H≤G, для яких фактормодулі A/CA(H) не є нетеровими R-модулями, задовольняє умову мінімальності. Ця умова називається умовою min−nnd. Отримано деякі властивості групи G.
An RG-module A such that R is an integral ring, a group G is locally soluble, CG(A)=1, the quotient module A/CA(G) is not a Noetherian R-module, and the system of all subgroups H≤G for which the quotient modules A/CA(H) are not Noetherian R-modules satisfies the minimal condition on subgroups is studied. This condition is called the condition min−nnd. Some properties of the group G are obtained.
|
|---|---|
| ISSN: | 1025-6415 |