Random covers of finite homogeneous lattices
We develop and extend some results for the scheme of independent random elements distributed on a finite lattice. In particular, we introduce the concept of the cover of a homogeneous lattice Ln of rank n and derive the exact equations and estimations for the number of covers with a given number o...
Збережено в:
| Дата: | 2006 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/4437 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Random covers of finite homogeneous lattices / A.N. Alekseychuk // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 12–19. — Бібліогр.: 10 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We develop and extend some results for the scheme of independent random elements
distributed on a finite lattice. In particular, we introduce the concept of the cover of
a homogeneous lattice Ln of rank n and derive the exact equations and estimations
for the number of covers with a given number of blocks and for the total covers
number of the lattice Ln. A theorem about the asymptotic normality of the blocks
number in a random equiprobable cover of the lattice Ln is proved. The concept of
the cover index of the lattice Ln, that extend the notion of the cover index of a finite
set by its independent random subsets, is introduced. Applying the lattice moments
method, the limit distribution as n→∞ for the cover index of a subspace lattice of
the n-dimensional vector space over a finite field is determined.
|
|---|---|
| ISSN: | 0321-3900 |