Об эффективности методов классификации, основанных на минимизации эмпирического риска
Задачу бінарної класифікації зведено до мінімізації опуклих функціоналів регуляризованого емпіричного ризику у репродуктивному гільбертовому просторі. Розв’язок цієї задачі шукається у вигляді лінійної комбінації ядерних опорних функцій (метод опорних векторів Вапника). Отримано оцінки ризику помилк...
Saved in:
| Published in: | Кибернетика и системный анализ |
|---|---|
| Date: | 2009 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2009
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/44404 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Об эффективности методов классификации, основанных на минимизации эмпирического риска / В.И. Норкин, М.А. Кайзер // Кибернетика и системный анализ. — 2009. — № 5. — С. 93-105. — Бібліогр.: 33 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Задачу бінарної класифікації зведено до мінімізації опуклих функціоналів регуляризованого емпіричного ризику у репродуктивному гільбертовому просторі. Розв’язок цієї задачі шукається у вигляді лінійної комбінації ядерних опорних функцій (метод опорних векторів Вапника). Отримано оцінки ризику помилкової класифікації як функції об’єму навчальної вибірки та інших параметрів моделі.
A binary classification problem is reduced to the minimization of convex regularized empirical risk functionals in a reproducing kernel Hilbert space. The solution is searched for in the form of a finite linear combination of kernel support functions (support vector machines of Vapnik). Risk estimates for a misclassification as a function of a training sample volume and other model parameters are obtained.
|
|---|---|
| ISSN: | 0023-1274 |