Existence of generalized local times for Gaussian random fields
We consider a Gaussian centered random field that has values in the Euclidean space. We investigate the existence of local time for the random field as a generalized functional, an element of the Sobolev space constructed for our random field. We give the sufficient condition for such an existence in...
Saved in:
| Date: | 2006 |
|---|---|
| Main Author: | Rudenko, A. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2006
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/4449 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Existence of generalized local times for Gaussian random fields / A. Rudenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 142–153. — Бібліогр.: 6 назв.— англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the local times for Gaussian integrators
by: O. L. Izyumtseva
Published: (2014) -
Baxter type theorems for generalized random Gaussian processes
by: S. M. Krasnitskiy, et al.
Published: (2016) -
On Baxter type theorems for generalized random Gaussian processes with independent values
by: S. M. Krasnitskij, et al.
Published: (2020) -
Clark representation for local times of self-intersection of Gaussian integrators
by: A. A. Dorogovtsev, et al.
Published: (2018) -
Simulations of Gaussian stationary random processes with continuous spectrum
by: A. O. Pashko
Published: (2014)