Estimation of the rate of convergence to the limit distribution of the number of false solutions of a system of nonlinear random Boolean equations that has a linear part
The theorem on a estimation of the rate of convergence (n →∞) to the Poisson distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations, that has a linear part, over the field GF(2) is proved.
Gespeichert in:
| Datum: | 2007 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/4484 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Estimation of the rate of convergence to the limit distribution of the number of false solutions of a system of nonlinear random Boolean equations that has a linear part / V. Masol, M. Slobodian // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 132-143. — Бібліогр.: 3 назв.— англ. |