The length of the interval of indeterminacy for the estimate of multiple change-points

This article considers the problem of estimating the length of the interval of indeterminacy during construction of change-points' estimates using dynamical programming. It was proved that mathematical expectation of the length of the interval has asymptotically linear dependency on the penalty...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Author: Shurenkov, G.
Format: Article
Language:English
Published: Інститут математики НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/4494
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The length of the interval of indeterminacy for the estimate of multiple change-points / G. Shurenkov // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 251-266. — Бібліогр.: 8 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4494
record_format dspace
spelling Shurenkov, G.
2009-11-19T10:25:42Z
2009-11-19T10:25:42Z
2007
The length of the interval of indeterminacy for the estimate of multiple change-points / G. Shurenkov // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 251-266. — Бібліогр.: 8 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4494
This article considers the problem of estimating the length of the interval of indeterminacy during construction of change-points' estimates using dynamical programming. It was proved that mathematical expectation of the length of the interval has asymptotically linear dependency on the penalty for a change of distribution when the number of estimations tends to infinity.
en
Інститут математики НАН України
The length of the interval of indeterminacy for the estimate of multiple change-points
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The length of the interval of indeterminacy for the estimate of multiple change-points
spellingShingle The length of the interval of indeterminacy for the estimate of multiple change-points
Shurenkov, G.
title_short The length of the interval of indeterminacy for the estimate of multiple change-points
title_full The length of the interval of indeterminacy for the estimate of multiple change-points
title_fullStr The length of the interval of indeterminacy for the estimate of multiple change-points
title_full_unstemmed The length of the interval of indeterminacy for the estimate of multiple change-points
title_sort length of the interval of indeterminacy for the estimate of multiple change-points
author Shurenkov, G.
author_facet Shurenkov, G.
publishDate 2007
language English
publisher Інститут математики НАН України
format Article
description This article considers the problem of estimating the length of the interval of indeterminacy during construction of change-points' estimates using dynamical programming. It was proved that mathematical expectation of the length of the interval has asymptotically linear dependency on the penalty for a change of distribution when the number of estimations tends to infinity.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4494
citation_txt The length of the interval of indeterminacy for the estimate of multiple change-points / G. Shurenkov // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 251-266. — Бібліогр.: 8 назв.— англ.
work_keys_str_mv AT shurenkovg thelengthoftheintervalofindeterminacyfortheestimateofmultiplechangepoints
AT shurenkovg lengthoftheintervalofindeterminacyfortheestimateofmultiplechangepoints
first_indexed 2025-11-24T21:03:13Z
last_indexed 2025-11-24T21:03:13Z
_version_ 1850494271934693376
fulltext ΞN = { ξN 1 , . . . , ξN N } N ≥ 1 {ξN 1 , . . . , ξN N } = {ξ1, . . . , ξN} {F1, . . . , FK} P(ξj ∈ A) = Fh0 j (A) h0 = {h0 j , j = 1, . . . , N} h0 j ∈ {1, . . . , K} h0 j = const kj = [θiN ] < j ≤ [θi+1N ] 0 = θ0 < θ1 < . . . < θR < θR+1 = 1 kj h h0 {ξ1, . . . , ξN} Γ = {1, . . . , K} φ(·, j):R �→ R, j ∈ Γ. φ HN = {(h1, ..., hN) | hj ∈ Γ, j = 1, ..., N} , H = ⋃ N HN . J :H �→ R h ∈ Hn J(h) = n∑ i=1 (φ(ξi, hi) − πN(hi, hi−1)), πN(g, l) = πN 1g �=l, πN > 0 ĥ = argmax h∈HN J(h). h0 ĥ k̂1 = k1(ĥ) = min { l | ĥl �= ĥj, 1 ≤ j < l } k̂i = ki(ĥ) = min { l | ĥl �= ĥj , ki−1(ĥ) ≤ j < l } i ĥ ĥ i g h J(h) = J(g) ĥ θ̄ = mini�=j |θi − θj |, φki(x) = φ(x, k) − φ(x, i). ĥ gj(l) = argmax h={h0,...,hj−1,hj},hj=l J(h), l ∈ Γ gj+1 j (l) = argmax i∈Γ ( J(gj(i)) + φ(ξj+1, l) − πN(i, l) ) , ĥ = argmax h=hN(l),l∈Γ J(h). ĥu = argmax h=gu(l),l∈Γ J(h) gj(l) s χ(s) = min { t > s | gt s(i) = gt s(1), i ∈ Γ } . χ(s) s Δχ(s) = χ(s)−s χ(s, k) = min{t > s | gt s(i) = k, i ∈ Γ}, k ∈ Γ, χ(s) = min k∈Γ χ(s, k). i t gt+1(i) h g J(h) > J(g) i t J(gt(i)) > J(gt(j)), j ∈ Γ, j �= i i t J(gt(i)) ≥ J(gt(j)), j ∈ Γ t ĥt α ∈ R i α t J(gt(i)) > J(gt(j)) − α, j ∈ Γ, j �= i. i α t J(gt(i)) ≥ J(gt(j)) − α, j ∈ Γ, j �= i. α t Ot α Pk(·) ξ1, . . . ξN Fk Ek κ = mini�=j Eφji(ζj) > 0, ζj Fj φji(ζj) ≤ C < ∞, i, j ∈ Γ Dφji(ζj) < σ2 < ∞, i, j ∈ Γ φ(x, j) ξ1, . . . ξN wki 0 = wki 0 (t0) = t0, w ki 1 (t0) = min { t > t0 | max t0<u≤t ∑u j=t0+1 φki(ξj) > πN } wk 0 = wk 0(t0) = t0, wki l (t0) = wki l (t0) = wki 1 (wk l−1(t0)) wk l = wk l (t0) = wk l (t0) = maxi�=k wki l (t0) vk l = vk l (t0) = vk l (t0) = wk 3l(t0) E = {E(t1, t2) | t1 < t2} , E(t1, t2) = { min i�=k min t1<l1≤l2≤t2 l2∑ j=l1 φki (ξj) > −πN 2 } , t1 < t2 vk E = vk E(t0) = vk E(t0, φ) = min{vk 1(t) | E(s, vk 1(s)) , t ≥ t0} ṽk E = ṽk E(t0) = ṽk E(t0, φ) = min{vk l (t0)|E(vk l−1, v k l ) } vk E(t0) ≤ ṽk E(t0) t0 χ(s) ≤ min k∈Γ vk E(t0), t0 ≥ s. EΔχ(t) ≤ 6(πN + C)(K − 1)(1 + θ−1) C1κ , C1 = 1 − 48σ2(K − 1)2 πN πN + C πNκ . ∃u 0 ≤ u ≤ t gt(k) = { ĥu 1 , . . . ĥ u u, k, . . . , k } {k, . . . , k} u + 1 gt(k) h′ = {gt 1(k), . . . , gt u(k)} h′′ = { ĥu 1 , . . . ĥ u u, k, . . . , k } gt(k) J(gt(k)) = J(h′) − πN + t∑ j=u+1 φ(ξj, k) < J(ĥu) − πN + t∑ j=u+1 φ(ξj, k) = J(h′′). k gt(k) t t k t J(ĥt t) = J(gt(k)) gt+1(k) g̃t(k) = { gt+1 1 (k), ..., gt+1 t (k) } , g̃t+1(k) = { gt 1(k), ..., gt t(k), k } . gt+1(k) g̃t+1(k) gt+1(k) g̃t+1(k) J(gt+1(k)) ≥ J(g̃t+1(k)) = J(gt(k)) + φ(ξt+1, k). J(gt+1(k)) = J(g̃t(k)) − πN + φ(ξt+1, k). gt+1(k) k t J(gt(k)) ≥ J(g̃t(k)). 0 ≥ J(g̃t(k)) − J(gt(k)) = J(gt+1(k)) − J(g̃t+1(k)) + πN ≥ πN . i t J ( ĥt ) − J ( gt(i) ) > πN i t gt(i) �= ĥt J(gt(i)) < J(ĥt) gt+1(i) {gt 1(i), . . . , g t t(i), i} J(gt+1(i)) = J(ĥt) − πN + φ(ξt+1, i) > J(gt(i)) + φ(ξt+1, i) J(ĥt) − J(gt(i)) > πN . gt+1(i) g̃t+1(i) = { ĥt 1, ..., ĥ t t, i } . gt+1(i) J(g̃t+1(i))− J(gt+1(i)) = J(ĥt)− πN + φ(ξt+1, i)− J(gt(i)) − φ(ξt+1, i) > 0. gt+1(i) t i i t t πN i, k ∈ Γ, i �= k, t > t0, t0 ≤ u < t, x ∈ R α, αu ∈ [0, πN ] Ctu ki (x, α) = {∑t j=u+1 φki(ξj) > α − πN + x, k ∈ Ou α } , Dtu ki(x) = {∑t j=u+1 φki(ξj) > x } . ⋂ t0≤u<t ( Ctu ki (x, αu) ∪ Dtu ki(x) ) ∩ Dtt0 ki (πN + x) J ( gt(k) )− J ( gt(i) ) > x gt(i) t0 t u gt(i) k α u − 1 t∑ j=u φki (ξj) > x − πN + α. gu(i) J(gu(i)) ≤ J(gu−1(k)) − πN + α + φ(ξu, i) u − 1 i k α α ≥ 0 J(gu−1(k)) + t∑ j=u φ(ξj, k) − J(gu(i)) − t∑ j=u+1 φ (ξj, i) > x. J(gt(k)) ≥ J(gu−1(k)) + ∑t j=u φ(ξj, k) J ( gt(k) )− J (gu(i)) − t∑ j=u+1 φ (ξj, i) > x. t∑ j=u φki (ξj) > x. J(gu(k)) ≥ J(ĥu−1) − πN + φ(ξu, k), J(gu(i)) = J(ĥu−1) − πN + φ(ξu, i). J (gu(k)) + t∑ j=u+1 φ (ξj , k) − J(gu(i)) − t∑ j=u+1 φ(ξj, i) > x J(gt(k)) − J(gu(i)) − t∑ j=u+1 φ(ξj, i) > x gt(i) [t0, t] t∑ j=t0+1 φki (ξj) > πN + x J(gt(k)) ≥ J(gt0(i)) + ∑t j=t0+1 φ(ξj, k) − πN J(gt(k)) − J(gu(i)) − t∑ j=u+1 φ(ξj, i) > x. k [t0, w k 1(t0)] gwk 1 (t0)(i) k i k t0 J(gt0(k)) − J(gt0(i)) > 0 i �= k wki 1 (t0)∑ j=t0+1 φki(ξj) > πN . (t0, w k 1(t0)] g̃(i) = { gt0 1 (k), . . . gt0 t0 (k), k, . . . , k, i, . . . i } , k i wk 1(t0) ḡ(i) = { gt0 1 (i), . . . gt0 t0 (i), i, . . . i } . J(g̃(i)) − J(ḡ(i)) = J(gt0(k)) − J(gt0(i)) + wki 1 (t0)∑ j=t0+1 φki(ζj) − πN > 0. gwk 1 (t0)(i) i (t0, w k 1(t0)] gwk 1 (t0)(i) k i t0 χ(s, k) ≤ vk E(t0), t0 ≥ s. E(vk l−1(t0), v k l (t0)) wl = wk l (t0). [w3l−2, w3l) k πN 2 ⋂ i�=k ⋂ w3l−3<u≤t Dtu ki ( −πN 2 ) ∩ D tw3l−3 ki (πN 2 ) w3l−2 ≤ t < w3l k πN 2 Dtu ki ( −πN 2 ) = { t∑ j=u+1 φki(ξj) > −πN 2 } E(vk l−1, v k l ) = { min i�=k min vk l−1<l1≤l2≤vk l l2∑ j=l1 φki (ξj) > −πN 2 } wki l t∑ j=w3l−3+1 φki (ξj) = wki 3l−2∑ j=w3l−3+1 φki (ξj) + t∑ j=wki 3l−2+1 φki (ξj) > πN − πN 2 = πN 2 . D tw3l−3 ki ( πN 2 ) k πN 2 [w3l−1, w3l) k ⋂ i�=k ⋂ w3l−3<u≤w3l−2 Dtu ki (0) ∩ ⋂ w3l−2<u≤t Ctu ki ( 0,−πN 2 ) ∩ D tw3l−3 ki (πN ) . w3l−1 ≤ t < w3l u ∈ [w3l−3, w3l−2) Dtu ki (0) t∑ j=w3l−2+1 φki (ξj) > πN 2 w3l−2∑ j=u φki (ξj) > −πN 2 . u ∈ [w3l−2, w3l−1) Ctu ki ( 0,−πN 2 ) E(vk l−1, v k l ) k πN 2 [w3l−2, w3l−1) D tw3l−3 ki (πN ) w3l−2∑ j=w3l−3+1 φki (ξj) + wki 3l−1∑ j=w3l−2+1 φki (ξj) + t∑ j=wki 3l−1+1 φki (ξj) > πN 2 + πN − πN 2 = = πN , t ∈ [w3l−1, w3l). k [w3l−1, w3l) gvl(i) w3l−1 χ(s, k) ≤ vk E(t0). Ej = E(vk j−1, v k j ) ξj Fk Ek ṽk E ≤ Ek vk 1 Pk(E(0, vk 1)) E(ξ | A) = ∫ ξ(ω)P(dω | A) ξ1, ...ξN ξN+1, . . . Fk ṽk E Ek ṽk E ≤ ∞∑ l=1 Ek(v k l | ∩l−1 j=1Ej ∩ El)Pk (∩l−1 j=1Ej ∩ El ) = ∞∑ l=1 l∑ j=1 Ek(Δvk j | ∩l−1 j=1Ej ∩ El)Pk (∩l−1 j=1Ej ∩ El ) = Ek(v k 1 | E)Pk(E) ∞∑ l=0 l(1 − Pk(E)l + Ek(v k 1 | E) = Ek(v k 1 | E)Pk(E)Pk(E)−1 + Ek(v k 1 | E) = Ek(v k 1 ) Pk(E) ξj Fk Ek wk 1(t0) − t0 ≤ (K − 1)(πN + C) κ . ξ1, . . . ξN Ewk 1(t0) − t0 = Ewk 1(0). wk 1(0) = maxi�=k wki 1 (0) ≤∑i�=k wki 1 (0) Ewk 1(0) ≥ ∑ i�=k Ewki. Ewki E wki∑ j=1 φki (ξj) ≤ πN + C κ , Ewk 1(0) ≤ (K − 1)(πN + C) κ . ξ1, . . . ξN Δwj(t0) Ek vk 1(t0) − t0 ≤ 3(K − 1)(πN + C) κ . ξ1, . . . ξN Fk P ( min i�=k min 1≤l1≤l2≤vk 1 l2∑ j=l1 φki (ξj) > −πN 2 ) ≥ 1 − 48σ2(K − 1)2 πN πN + C κπN P ⎛ ⎝min i�=k min 1≤l1≤l2≤vk 1 l2∑ j=l1 φki (ξj) ≤ −πN 2 ⎞ ⎠ ≤ ∑ i�=k P ⎛ ⎝ min 1≤l1≤l2≤vk 1 l2∑ j=l1 φki (ξj) ≤ −πN 2 ⎞ ⎠ P ( min 1≤l1≤l2≤vk 1 l2∑ j=l1 φki (ξj) ≤ −πN 2 ) ≤ P ( min 1≤l1≤l2≤vk 1 l2∑ j=l1 ( φki (ξj) − Eφki (ξj) ) ≤ −πN 2 ) ≤ P ( max 1≤l1≤l2≤vk 1 ∣∣∣∣∣ l2∑ j=l1 ( φki (ξj) − Eφki (ξj) )∣∣∣∣∣ ≥ πN 2 ) ≤ P ( max 1≤l1≤vk 1 ∣∣∣∣∣ l1∑ j=1 ( φki (ξj) − Eφki (ξj) )∣∣∣∣∣ ≥ πN 4 ) P ( max 1≤l1≤vk 1 ∣∣∣∣∣ l1∑ j=1 ( φki (ξj) − Eφki (ξj) )∣∣∣∣∣ ≥ πN 4 ) ≤ 16 π2 N D vk 1∑ j=1 φki (ξj) ≤ 16σ2Evk 1 π2 N ≤ 48σ2(K − 1)(πN + C) κπ2 N P ( min i�=k min 1≤l1≤l2≤vk 1 l2∑ j=l1 φki (ξj) > −πN 2 ) ≥ 1 − 48σ2(K − 1)2(πN + C) κπ2 N . t0 ≥ t χ(t) ≤ min k∈Γ vk E(t0), EΔχ(t) ≤ 2(1 + θ̄−1) max k∈Γ Ek vk E v(s) = vk E(s), k = h0 s ρ(s) s v(s) ks s ks n n s EΔχ(t) = EΔχ(t) 1ρ(t)=0 +EΔχ(t) 1ρ(t)=1 +EΔχ(t) 1ρ(t)>1 = a1 + a2 + a3 a2 EΔχ(t) 1ρ(t)=1 = E ( χ(t) − kt ) 1ρ(t)=1 +E ( kt − t ) 1ρ(t)=1 ≤ E max(χ(t) − kt, 0) 1ρ(t)=1 +E(kt − t) 1ρ(t)=1 = a21 + a22 a1 + a22 kt > t χ(t) ≤ v(t) EΔχ(t) 1ρ(t)=0 +E(kt − t) 1ρ(t)=1 ≤ EΔχ(t) 1ρ(t)=0 +E(kt − t) 1ρ(t)≥1 ≤ E ( Δχ(t) 1v(t)<kt +(kt − t) 1v(t)≥kt ) ≤ E min ( Δv(t), kt − t ) ξj (t, kt] E min(Δv(t), kt − t) = Eh0 t min(Δv(t), kt − t) ≤ Eh0 t v(t) ≤ max k∈Γ Ek vk E(0), a21 Emax ( χ(t) − kt, 0 ) 1ρ(t)=1 ≤ E min ( max(χ(t) − kt, 0), kt 2 − kt ) ≤ E min ( max(v(kt) − kt, 0), kt 2 − kt ) = Emin ( Δv(kt), kt 2 − kt ) E min(Δv(kt), kt 2 − kt) ≤ max k∈Γ Ek Δvk E(0) a3 E(Δχ(t) 1ρ(t)>1) ≤ (N + 1)P (Δv(kt) > θN) . P ( Δv(kt) > θ̄N ) ≤ E Δv(kt) θ̄N E(Δχ(t) 1ρ(t)>1) ≤ 2 maxk Ek v(0) θ̄ χ(s) ≤ min k∈Γ vk E(t0), t0 ≥ s ξj Fk Ek vk E(t0) ≤ Ek ṽk E(t0) ≤ Ek vk 1(0) Pk(E(0, vk 1)) . Pk(E(0, vk 1)) ≥ 1 − 48σ2(K − 1)2 πN πN + C πNκ . Ek vk E(t0) ≤ Ek vk 1(0) C1 . Ek vk 1 ≤ 3(K − 1)(πN + C) κ . Ek vk E(t0) ≤ 3(K − 1)(πN + C) C1κ . E χ(s) ≤ 2(1 + θ̄−1) max k∈Γ Ek vk E ≤ 6(1 + θ̄−1)(K − 1)(πN + C) C1κ . E φki(ζj) = ∞ φ(ζj, j)−φ(ζj, i) E φji(ζj) > 0, i �= j, ζj Fj E φji(ζj) = +∞ E φji(ζj) 1φji(ζj)<0 > −∞, i, j ∈ Γ D φji(ζj) 1φji(ζj)<0 < σ2 < ∞, i, j ∈ Γ φki y (x) = { φki(x), y < x, y, y ≥ x. κ > 0, C ∈ R EΔχ(t) ≤ 6(πN + C)(K − 1)(1 + θ̄−1) C2κ , C2 = 1 − 48(σ2 + C2)(K − 1)2 πN πN + C πNκ . E χ(s) − s ≤ 2(1 + θ̄−1) Ek vk 1 (0) Pk(E(0, vk 1)) . Ek vk 1(0) = 3 Ek wk 1(0). Ek wk 1(0) ≤∑i�=k Ek wki 1 (0).∑t j=1 φki y (ξj) ≤ ∑t j=1 φki(ξj), wki 1 (0, φ) ≤ wki 1 (0, φy). E φki y (ζj) → E φki(ζj), y → ∞, ∃κ > 0 ∃C ∈ R : E φki C (ζj) > κ. Ek wki 1 (0, φC) ≤ πN + C κ . Ek vk 1(0, φC) = 3 Ek wk 1(0, φC) ≤ 3(K − 1)(πN + C) κ . Pk(E(0, vk 1)) Pk(E(0, vk 1)) ≥ Pk ( min i�=k min 0<l1≤l2≤vk 1 l2∑ j=l1 φki C (ξj) > −πN 2 ) D φki C (ζk) ≤ D φki(ζk)φki(ζk)<0 + E ( φki C (ζk)φki(ζk)≥0 )2 ≤ σ2 + C2 Pk(E(0, vk 1)) ≤ C2. E Δχ(s) ≤ 6(πN + C)(K − 1)(1 + θ̄−1) C2κ