Оптимальные квадратурные вычисления интегралов от быстроосциллирующих функций в случае сильной осцилляции в интерполяционном классе Липшица

Побудовано оптимальну за точністю квадратурну формулу обчислення перетворення Фур’є фінітних функцій з інтерполяційного класу Ліпшиця. Розглянуто випадок сильної осциляції підінтегральної функції. Обгрунтування оптимальності базується на використанні методу граничних функцій, а саме побудові чебишов...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2010
Hauptverfasser: Задирака, В.К., Мельникова, С.С., Луц, Л.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/45147
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Оптимальные квадратурные вычисления интегралов от быстроосциллирующих функций в случае сильной осцилляции в интерполяционном классе Липшица / В.К. Задирака, С.С. Мельникова, Л.В. Луц // Кибернетика и системный анализ. — 2010. — № 2. — С. 105-112. — Бібліогр.: 4 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Побудовано оптимальну за точністю квадратурну формулу обчислення перетворення Фур’є фінітних функцій з інтерполяційного класу Ліпшиця. Розглянуто випадок сильної осциляції підінтегральної функції. Обгрунтування оптимальності базується на використанні методу граничних функцій, а саме побудові чебишовського центру та чебишовського радіусу в області невизначеності розв’язку задачі. An accuracy-optimal quadrature formula is derived to calculate the Fourier transform of finite functions from an interpolation Lipschitz class. The case of strong oscillation of the subintegral function is considered. The optimality is substantiated based on the boundary function method, namely, constructing the Chebyshev center and Chebyshev radius in the uncertainty domain of the problem solution.
ISSN:0023-1274