Prediction problem for random fields on groups
The problem considered is the problem of optimal linear estimation of the functional Aξ = ∑↑∞↓j=0 ∫↓G a(g, j)ξ(g, j)dg which depends on the unknown values of a homogeneous random field ξ(g, j) on the group G × Z from observations of the field ξ(g, j) + η(g, j) for (g, j) belongs G×{−1,−2, . . .}, wher...
Gespeichert in:
| Datum: | 2007 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/4518 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Prediction problem for random fields on groups / M. Moklyachuk // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 148–162. — Бібліогр.: 20 назв.— англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The problem considered is the problem of optimal linear estimation of the functional Aξ = ∑↑∞↓j=0 ∫↓G a(g, j)ξ(g, j)dg which depends on the unknown values of a homogeneous random field ξ(g, j) on the group G × Z from observations of the field ξ(g, j) + η(g, j) for (g, j) belongs G×{−1,−2, . . .}, where η(g, j) is an uncorrelated with ξ(g, j) homogeneous random field ξ(g, j) on the group G×Z. Formulas are proposed for calculation the mean square error and spectral characteristics of the optimal linear estimate in the case where spectral densities of the fields are known. The least favorable spectral densities and the minimax spectral characteristics of the optimal estimate of the functional are found for some classes of spectral densities.
|
|---|---|
| ISSN: | 0321-3900 |