Решение проблемы инвариантности вероятностных характеристик заведомо совместных систем случайных нелинейных уравнений над конечным коммутативным кольцом с единицей
Розглянуто один клас заздалегідь сумісних систем випадкових нелінійних рівнянь над довільним скінченним комутативним кільцем з одиницею. Досліджуються питання про межу області інваріантності і відповідно граничних факторіальних моментів числа ненульових розв’язків, відмінних від фіксованого розв’язк...
Gespeichert in:
| Veröffentlicht in: | Кибернетика и системный анализ |
|---|---|
| Datum: | 2010 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2010
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/45194 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Решение проблемы инвариантности вероятностных характеристик заведомо совместных систем случайных нелинейных уравнений над конечным коммутативным кольцом с единицей / А.А. Левитская // Кибернетика и системный анализ. — 2010. — № 3. — С. 28-41. — Бібліогр.: 10 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Розглянуто один клас заздалегідь сумісних систем випадкових нелінійних рівнянь над довільним скінченним комутативним кільцем з одиницею. Досліджуються питання про межу області інваріантності і відповідно граничних факторіальних моментів числа ненульових розв’язків, відмінних від фіксованого розв’язку даної системи, та граничного розподілу числа таких розв’язків, а також вивчається їх геометрична структура, коли число невідомих в системі прямує до нескінченності.
A class of a priory solvable system of random non-linear equations over a finite commutative ring with an unit is considered. The problems on the bounds of the invariance domains for the limit factorial moments and the limit distribution of the number of solutions which are different from fixed solution of the system respectively, and the geometrical structure of this solutions are investigated.
|
|---|---|
| ISSN: | 0023-1274 |