On the φ-asymptotic behaviour of solutions of stochastic differential equations

In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) function...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Buldygin, V.V., Klesov, O.I., Steinebach, J.G., Tymoshenko, O.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/4532
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4532
record_format dspace
spelling Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
Tymoshenko, O.A.
2009-11-25T11:00:57Z
2009-11-25T11:00:57Z
2008
On the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4532
519.21
In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and φ, under which φ(X(•)) can be approximated a.s. by φ(μ(•), where μ is the solution of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application of these results we discuss the problem of φ-asymptotic equivalence for solutions of stochastic differential equations.
This work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-2 and 436 UKR 113/68/0-1
en
Інститут математики НАН України
On the φ-asymptotic behaviour of solutions of stochastic differential equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the φ-asymptotic behaviour of solutions of stochastic differential equations
spellingShingle On the φ-asymptotic behaviour of solutions of stochastic differential equations
Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
Tymoshenko, O.A.
title_short On the φ-asymptotic behaviour of solutions of stochastic differential equations
title_full On the φ-asymptotic behaviour of solutions of stochastic differential equations
title_fullStr On the φ-asymptotic behaviour of solutions of stochastic differential equations
title_full_unstemmed On the φ-asymptotic behaviour of solutions of stochastic differential equations
title_sort on the φ-asymptotic behaviour of solutions of stochastic differential equations
author Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
Tymoshenko, O.A.
author_facet Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
Tymoshenko, O.A.
publishDate 2008
language English
publisher Інститут математики НАН України
format Article
description In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and φ, under which φ(X(•)) can be approximated a.s. by φ(μ(•), where μ is the solution of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application of these results we discuss the problem of φ-asymptotic equivalence for solutions of stochastic differential equations.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4532
citation_txt On the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ.
work_keys_str_mv AT buldyginvv ontheφasymptoticbehaviourofsolutionsofstochasticdifferentialequations
AT klesovoi ontheφasymptoticbehaviourofsolutionsofstochasticdifferentialequations
AT steinebachjg ontheφasymptoticbehaviourofsolutionsofstochasticdifferentialequations
AT tymoshenkooa ontheφasymptoticbehaviourofsolutionsofstochasticdifferentialequations
first_indexed 2025-12-07T18:04:17Z
last_indexed 2025-12-07T18:04:17Z
_version_ 1850873643958009856