Certain properties of triangular transformations of measures

We study the convergence of triangular mappings on R^n, i.e., mappings T such that the ith coordinate function Ti depends only on the variables x1, . . . ,xi. We show that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An exam...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Medvedev, K.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/4540
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Certain properties of triangular transformations of measures / K.V. Medvedev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 95–99. — Бібліогр.: 12 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4540
record_format dspace
spelling Medvedev, K.V.
2009-11-25T11:06:24Z
2009-11-25T11:06:24Z
2008
Certain properties of triangular transformations of measures / K.V. Medvedev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 95–99. — Бібліогр.: 12 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4540
519.21
We study the convergence of triangular mappings on R^n, i.e., mappings T such that the ith coordinate function Ti depends only on the variables x1, . . . ,xi. We show that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations.
Partially supported by the RFBR projects 07-01-00536 and GFEN-06-01-39003, the DFG grant 436 RUS 113/343/0(R), and the INTAS project 05-109-4856.
en
Інститут математики НАН України
Certain properties of triangular transformations of measures
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Certain properties of triangular transformations of measures
spellingShingle Certain properties of triangular transformations of measures
Medvedev, K.V.
title_short Certain properties of triangular transformations of measures
title_full Certain properties of triangular transformations of measures
title_fullStr Certain properties of triangular transformations of measures
title_full_unstemmed Certain properties of triangular transformations of measures
title_sort certain properties of triangular transformations of measures
author Medvedev, K.V.
author_facet Medvedev, K.V.
publishDate 2008
language English
publisher Інститут математики НАН України
format Article
description We study the convergence of triangular mappings on R^n, i.e., mappings T such that the ith coordinate function Ti depends only on the variables x1, . . . ,xi. We show that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4540
citation_txt Certain properties of triangular transformations of measures / K.V. Medvedev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 95–99. — Бібліогр.: 12 назв.— англ.
work_keys_str_mv AT medvedevkv certainpropertiesoftriangulartransformationsofmeasures
first_indexed 2025-12-07T19:51:52Z
last_indexed 2025-12-07T19:51:52Z
_version_ 1850880413282598912