A uniqueness theorem for the martingale problem describing a diffusion in media with membranes

We formulate a martingale problem that describes a diffusion process in a multidimensional Euclidean space with a membrane located on a given mooth surface and having the properties of skewing and delaying. The theorem on the existence of no more than one solution to the problem is proved.

Saved in:
Bibliographic Details
Date:2008
Main Authors: Aryasova, O.V., Portenko, M.I.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/4547
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A uniqueness theorem for the martingale problem describing a diffusion in media with membranes / O.V. Aryasova, M.I. Portenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 1–9. — Бібліогр.: 9 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4547
record_format dspace
spelling Aryasova, O.V.
Portenko, M.I.
2009-12-03T16:33:28Z
2009-12-03T16:33:28Z
2008
A uniqueness theorem for the martingale problem describing a diffusion in media with membranes / O.V. Aryasova, M.I. Portenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 1–9. — Бібліогр.: 9 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4547
519.21
We formulate a martingale problem that describes a diffusion process in a multidimensional Euclidean space with a membrane located on a given mooth surface and having the properties of skewing and delaying. The theorem on the existence of no more than one solution to the problem is proved.
en
Інститут математики НАН України
A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
spellingShingle A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
Aryasova, O.V.
Portenko, M.I.
title_short A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_full A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_fullStr A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_full_unstemmed A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_sort uniqueness theorem for the martingale problem describing a diffusion in media with membranes
author Aryasova, O.V.
Portenko, M.I.
author_facet Aryasova, O.V.
Portenko, M.I.
publishDate 2008
language English
publisher Інститут математики НАН України
format Article
description We formulate a martingale problem that describes a diffusion process in a multidimensional Euclidean space with a membrane located on a given mooth surface and having the properties of skewing and delaying. The theorem on the existence of no more than one solution to the problem is proved.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4547
citation_txt A uniqueness theorem for the martingale problem describing a diffusion in media with membranes / O.V. Aryasova, M.I. Portenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 1–9. — Бібліогр.: 9 назв.— англ.
work_keys_str_mv AT aryasovaov auniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
AT portenkomi auniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
AT aryasovaov uniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
AT portenkomi uniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
first_indexed 2025-11-30T16:23:25Z
last_indexed 2025-11-30T16:23:25Z
_version_ 1850858127763701760