On asymptotic behaviour of probabilities of small deviations for compound Cox processes

We derive logarithmic asymtotics for probabilities of small deviations for compound Cox processes in the space of trajectories. We find conditions under which these asymptotics are the same as those for sums of independent identically distributed random variables and homogeneous processes with indep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Frolov, A.N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/4548
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On asymptotic behaviour of probabilities of small deviations for compound Cox processes / A.N. Frolov // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 19–27. — Бібліогр.: 10 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4548
record_format dspace
spelling Frolov, A.N.
2009-12-03T16:34:21Z
2009-12-03T16:34:21Z
2008
On asymptotic behaviour of probabilities of small deviations for compound Cox processes / A.N. Frolov // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 19–27. — Бібліогр.: 10 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4548
519.21
We derive logarithmic asymtotics for probabilities of small deviations for compound Cox processes in the space of trajectories. We find conditions under which these asymptotics are the same as those for sums of independent identically distributed random variables and homogeneous processes with independent increments. We show that if these conditions do not hold, the asymptotics of small deviations for compound Cox processes are quite different.
This article was partially supported by RFBR, grant 05–01–00486.
en
Інститут математики НАН України
On asymptotic behaviour of probabilities of small deviations for compound Cox processes
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On asymptotic behaviour of probabilities of small deviations for compound Cox processes
spellingShingle On asymptotic behaviour of probabilities of small deviations for compound Cox processes
Frolov, A.N.
title_short On asymptotic behaviour of probabilities of small deviations for compound Cox processes
title_full On asymptotic behaviour of probabilities of small deviations for compound Cox processes
title_fullStr On asymptotic behaviour of probabilities of small deviations for compound Cox processes
title_full_unstemmed On asymptotic behaviour of probabilities of small deviations for compound Cox processes
title_sort on asymptotic behaviour of probabilities of small deviations for compound cox processes
author Frolov, A.N.
author_facet Frolov, A.N.
publishDate 2008
language English
publisher Інститут математики НАН України
format Article
description We derive logarithmic asymtotics for probabilities of small deviations for compound Cox processes in the space of trajectories. We find conditions under which these asymptotics are the same as those for sums of independent identically distributed random variables and homogeneous processes with independent increments. We show that if these conditions do not hold, the asymptotics of small deviations for compound Cox processes are quite different.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4548
citation_txt On asymptotic behaviour of probabilities of small deviations for compound Cox processes / A.N. Frolov // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 19–27. — Бібліогр.: 10 назв.— англ.
work_keys_str_mv AT frolovan onasymptoticbehaviourofprobabilitiesofsmalldeviationsforcompoundcoxprocesses
first_indexed 2025-12-07T17:03:40Z
last_indexed 2025-12-07T17:03:40Z
_version_ 1850869830555533312