Linear stochastic differential equations in the dual of a multi-Hilbertian space

We prove the existence and uniqueness of strong solutions for linear stochastic differential equations in the space dual to a multi–Hilbertian space driven by a finite dimensional Brownian motion under relaxed assumptions on the coefficients. As an application, we consider equtions in S' with c...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Authors: Gawarecki, L., Mandrekar, V., Rajeev, B.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/4549
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Linear stochastic differential equations in the dual of a multi-Hilbertian space / L. Gawarecki, V. Mandrekar, B. Rajeev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 28–34. — Бібліогр.: 9 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4549
record_format dspace
spelling Gawarecki, L.
Mandrekar, V.
Rajeev, B.
2009-12-03T16:35:05Z
2009-12-03T16:35:05Z
2008
Linear stochastic differential equations in the dual of a multi-Hilbertian space / L. Gawarecki, V. Mandrekar, B. Rajeev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 28–34. — Бібліогр.: 9 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4549
519.21
We prove the existence and uniqueness of strong solutions for linear stochastic differential equations in the space dual to a multi–Hilbertian space driven by a finite dimensional Brownian motion under relaxed assumptions on the coefficients. As an application, we consider equtions in S' with coefficients which are differential operators violating the typical growth and monotonicity conditions.
en
Інститут математики НАН України
Linear stochastic differential equations in the dual of a multi-Hilbertian space
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Linear stochastic differential equations in the dual of a multi-Hilbertian space
spellingShingle Linear stochastic differential equations in the dual of a multi-Hilbertian space
Gawarecki, L.
Mandrekar, V.
Rajeev, B.
title_short Linear stochastic differential equations in the dual of a multi-Hilbertian space
title_full Linear stochastic differential equations in the dual of a multi-Hilbertian space
title_fullStr Linear stochastic differential equations in the dual of a multi-Hilbertian space
title_full_unstemmed Linear stochastic differential equations in the dual of a multi-Hilbertian space
title_sort linear stochastic differential equations in the dual of a multi-hilbertian space
author Gawarecki, L.
Mandrekar, V.
Rajeev, B.
author_facet Gawarecki, L.
Mandrekar, V.
Rajeev, B.
publishDate 2008
language English
publisher Інститут математики НАН України
format Article
description We prove the existence and uniqueness of strong solutions for linear stochastic differential equations in the space dual to a multi–Hilbertian space driven by a finite dimensional Brownian motion under relaxed assumptions on the coefficients. As an application, we consider equtions in S' with coefficients which are differential operators violating the typical growth and monotonicity conditions.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4549
citation_txt Linear stochastic differential equations in the dual of a multi-Hilbertian space / L. Gawarecki, V. Mandrekar, B. Rajeev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 28–34. — Бібліогр.: 9 назв.— англ.
work_keys_str_mv AT gawareckil linearstochasticdifferentialequationsinthedualofamultihilbertianspace
AT mandrekarv linearstochasticdifferentialequationsinthedualofamultihilbertianspace
AT rajeevb linearstochasticdifferentialequationsinthedualofamultihilbertianspace
first_indexed 2025-12-07T15:55:03Z
last_indexed 2025-12-07T15:55:03Z
_version_ 1850865513711796224