On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space

For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Kharazishvili, A.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/4550
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4550
record_format dspace
spelling Kharazishvili, A.B.
2009-12-03T16:35:43Z
2009-12-03T16:35:43Z
2008
On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4550
519.21
For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero subsets of the Euclidean space, whose Minkowski’s sum is not Lebesgue measurable.
en
Інститут математики НАН України
On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
spellingShingle On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
Kharazishvili, A.B.
title_short On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_full On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_fullStr On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_full_unstemmed On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_sort on a bad descriptive structure of minkowski’s sum of certain small sets in a topological vector space
author Kharazishvili, A.B.
author_facet Kharazishvili, A.B.
publishDate 2008
language English
publisher Інститут математики НАН України
format Article
description For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero subsets of the Euclidean space, whose Minkowski’s sum is not Lebesgue measurable.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4550
citation_txt On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ.
work_keys_str_mv AT kharazishviliab onabaddescriptivestructureofminkowskissumofcertainsmallsetsinatopologicalvectorspace
first_indexed 2025-12-07T19:50:02Z
last_indexed 2025-12-07T19:50:02Z
_version_ 1850880297142321152