Реоптимизация задачи о покрытии множествами

При додаванні або звільненні елемента з множини задачу про покриття множинами реоптимізовано з відношенням (2 - 1/(ln m + 1)), де m— число елементів множини. Подібний результат має місце при додаванні або вилученні довільного числа 1 < p < m елшементів з множини. If an element is inserted int...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кибернетика и системный анализ
Дата:2010
Автор: Михайлюк, В.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2010
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/45644
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Реоптимизация задачи о покрытии множествами / В.А. Михайлюк // Кибернетика и системный анализ. — 2010. — № 6. — С. 27–31. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:При додаванні або звільненні елемента з множини задачу про покриття множинами реоптимізовано з відношенням (2 - 1/(ln m + 1)), де m— число елементів множини. Подібний результат має місце при додаванні або вилученні довільного числа 1 < p < m елшементів з множини. If an element is inserted into or deleted from a set, the set covering problem can be reoptimizated with the ratio (2 - 1/(ln m + 1)), where m is the number of elements of the set. A similar result holds if an arbitrary number 1< p < m of elements of the set is inserted or deleted.
ISSN:0023-1274