Localization of Resonant Spherical Waves

This paper treats radial spherical resonant waves excited in the transresonant regime. An approximate general solution of a perturbedwave equation is presented here, which takes into account nonlinear, spatial, and dissipative effects. Then a boundary problem reduces to the perturbed compound...

Full description

Saved in:
Bibliographic Details
Published in:Проблемы прочности
Date:2002
Main Authors: Galiev, Sh.U., Panova, O.P.
Format: Article
Language:English
Published: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2002
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/46733
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Localization of Resonant Spherical Waves / Sh.U. Galieva, O.P. Panova // Проблемы прочности. — 2002. — № 1. — С. 102-111. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:This paper treats radial spherical resonant waves excited in the transresonant regime. An approximate general solution of a perturbedwave equation is presented here, which takes into account nonlinear, spatial, and dissipative effects. Then a boundary problem reduces to the perturbed compound Burgers-Kortewegde Vries equation (BKdV) in time. Several solutions to this equation are constructed. Shock waves may be excited near resonance according to the solutions for an inviscid medium. However, both viscosity and spatial dispersion begin to be important very close to resonance and prevent the formation of shock discontinuity. As a result, periodic localized excitations are generated in resonators instead of shock waves. Рассматриваются радиальные сферические резонансные волны, возбуждаемые в трансрезонансном режиме. Приближенное общее решение возмущенного волнового уравнения представляется в виде, учитывающем нелинейные, пространственные и диссипативные эффекты. Граничная задача сводится к возмущенному смешанному уравнению Бюргера- Кортевега-де Вриза, для которого построено несколько решений. Установлено, что в невязкой среде вблизи резонанса могут возникать ударные волны. Однако как вязкость, так и пространственная дисперсия вблизи резонанса предотвращают формирование ударного разрыва, в результате чего в резонаторе вместо ударных генерируются периодические локализованные волны. Розглядаються радіальні сферичні резонансні хвилі, що збуджуються в трансрезонансному режимі. Наближений загальний розв’язок збуреного хвильового рівняння записується з урахуванням нелінійних, просторових і дисипативних ефектів. Гранична задача зводиться до збуреного змішаного рівняння Бюргера-Кортевега-де Вріза, для якого побудовано декілька розв’ язків. Установлено, що в нев’язкому середовищі поблизу резонансу можуть виникати ударні хвилі. Однак як в ’язкість, так і просторова дисперсія поблизу резонансу запобігають формуванню ударного розриву, в результаті чого в резонаторі замість ударних генеруються періодичні локалізовані хвилі.
ISSN:0556-171X