Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets

The investigation of three-dimensional problem of normal and oblique interaction of yawed pro jectiles with ceramic plates in a velocity range up to 4000 m/s was carried out by the finite element method. The paper presents an advanced constitutive model of AD995 Alumina. The model of a damaged mediu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
1. Verfasser: Gorel’skii, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2002
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/46793
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets / V. A. Gorel’skii // Проблемы прочности. — 2002. — № 3. — С. 109-113. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-46793
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-467932025-02-09T14:40:53Z Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets Численное моделирование при ударе по нормали и под углом к поверхности преграды Gorel’skii, V.A. Научно-технический раздел The investigation of three-dimensional problem of normal and oblique interaction of yawed pro jectiles with ceramic plates in a velocity range up to 4000 m/s was carried out by the finite element method. The paper presents an advanced constitutive model of AD995 Alumina. The model of a damaged medium is used; it is characterized by a possibility of crack initiation and propagation under impact loading. A kinetic fracture model of the active type developed earlier for the simulation of fracture in various materials is used for numerical modeling of ceramic failure at high velocity impact. Temperature effects are taken into account in the constitutive model. На основе метода конечных элементов исследовалась пространственная задача взаимодействия при ударе по нормали и под углом снаряда с керамической пластиной при скорости до 4000 м/с. Представлена усовершенствованная модель керамики AD995 Alumina, учитывающая температурное воздействие. Применяется также модель поврежденной среды, характеризующаяся возможностью моделировать возникновение и развитие трещины в условиях ударного нагружения. В процессе численного моделирования разрушения керамической пластины при высокоскоростном воздействии была использована кинетическая модель разрушения активного типа, разработанная ранее для моделирования разрушения различных материалов. На основі методу скінченних елементів досліджувалася просторова задача взаємодії при ударі по нормалі та під кутом снаряда з керамічною пластиною при швидкості до 4000 м/с. Представлено удосконалену модель кераміки AD955 Alumina, яка враховує температурну взаємодію. Використовується також модель пошкодженого середовища, для якої характерна можливість моделювання виникнення і розвитку тріщини в умовах ударного навантаження. У процесі числового моделювання руйнування керамічної пластини при високій швидкості було використано кінетичну модель руйнування активного типу, яку розроблено раніше для моделювання руйнування різних матеріалів. 2002 Article Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets / V. A. Gorel’skii // Проблемы прочности. — 2002. — № 3. — С. 109-113. — Бібліогр.: 5 назв. — англ. 0556-171X https://nasplib.isofts.kiev.ua/handle/123456789/46793 539.4 en Проблемы прочности application/pdf Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Gorel’skii, V.A.
Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets
Проблемы прочности
description The investigation of three-dimensional problem of normal and oblique interaction of yawed pro jectiles with ceramic plates in a velocity range up to 4000 m/s was carried out by the finite element method. The paper presents an advanced constitutive model of AD995 Alumina. The model of a damaged medium is used; it is characterized by a possibility of crack initiation and propagation under impact loading. A kinetic fracture model of the active type developed earlier for the simulation of fracture in various materials is used for numerical modeling of ceramic failure at high velocity impact. Temperature effects are taken into account in the constitutive model.
format Article
author Gorel’skii, V.A.
author_facet Gorel’skii, V.A.
author_sort Gorel’skii, V.A.
title Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets
title_short Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets
title_full Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets
title_fullStr Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets
title_full_unstemmed Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets
title_sort computer simulation of normal and oblique impacts of yawed projectiles on ceramic targets
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2002
topic_facet Научно-технический раздел
url https://nasplib.isofts.kiev.ua/handle/123456789/46793
citation_txt Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets / V. A. Gorel’skii // Проблемы прочности. — 2002. — № 3. — С. 109-113. — Бібліогр.: 5 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT gorelskiiva computersimulationofnormalandobliqueimpactsofyawedprojectilesonceramictargets
AT gorelskiiva čislennoemodelirovaniepriudareponormaliipoduglomkpoverhnostipregrady
first_indexed 2025-11-26T23:23:38Z
last_indexed 2025-11-26T23:23:38Z
_version_ 1849897172060864512
fulltext UDC 539.4 Computer Simulation of Normal and Oblique Impacts of Yawed Projectiles on Ceramic Targets V. A. Gorel’skii Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia Численное моделирование при ударе по нормали и под углом к поверхности преграды В. А. Горельский Томский госуииверситет систем контроля и радиоэлектроники, Томск, Россия На основе метода конечных элементов исследовалась пространственная задача взаимо­ действия при ударе по нормали и под углом снаряда с керамической пластиной при скорости до 4000 м/с. Представлена усовершенствованная модель керамики AD995 Alumina, учиты­ вающая температурное воздействие. Применяется также модель поврежденной среды, характеризующаяся возможностью моделировать возникновение и развитие трещины в условиях ударного нагружения. В процессе численного моделирования разрушения керами­ ческой пластины при высокоскоростном воздействии была использована кинетическая мо­ дель разрушения активного типа, разработанная ранее для моделирования разрушения различных материалов. Ключевые слова: ударное нагружение, керамика, метод конечных элемен­ тов, модель разрушения. Formulation of the Problem. A model of a damageable medium characterized by microcavities (cracks and pores) is used. According to [1], the total volume of the medium W consists of an undamaged part, which occupies the volume Wc and is characterized by the density p c, and microcavities, which occupy the volume WT. The density of the microcavities is assumed to be zero. The mean density of the damageable medium is related to the parameters introduced by the formula p = p c (Wc/W). The degree of damage of the medium is characterized by the specific volume of cracks VT = WT /(Wp). A set of equations describing time-dependent adiabatic motion of a compressible medium (in the case of both elastic and plastic deformation) and taking into account the growth and accumulation of microdamages consists of equations of continuity, motion, and energy, and the equation that describes the variation of the specific volume of cracks: УДК 539.4 p dvi/dt =aij, j , (1) dp/dt + div( pv ) = 0, (2) dE/dt = (1/ p)Oij £ij, (3) © V. A. GOREL’SKII, 2002 ISSN 0556-171X. Проблемы прочности, 2002, № 3 109 V. A. Gorel’skii dVT dt 0 for |pc| < P * or Pc > P * and VT = 0, - sgn( Pc )K 4(| Pc| - P *)(V2 +Vt ) for Pc < -P * or Pc > P * and VT > 0, (4) where P = PkV\l(VT + V1); p is the density; vt are the components of the velocity vector; E is the specific internal energy, £ j are the components of the deformation-velocity tensor; aij = (P + Q)dij- + Sij are the stress-tensor components; Pc is the pressure in the continuous component of the substance; P = Pc(p/pc) is the mean pressure; Q is the artificial viscosity [2], and V1, V2, Pk, and K 4 are material constants obtained experimentally. Simulation of fracture was performed with the help of the kinetic model of fracture of active type, which defines the growth of microcracks that continuously change the material properties and cause the stress relaxation [3, 4]. Pressure in the undamaged substance is a function of the specific volume, internal energy, and specific volume of cracks, and in the whole range of loading conditions it is defined by the equation of state of the Mie-Gruneisen type according to the formula where y 0 is the Gruneisen coefficient, Vo and V are the initial and current specific volumes, a and b are constants of the Hugoniot adiabat, which is defined by the linear relation where D is the shock-wave velocity and um is the mass velocity of the substance beyond the shock-wave front. Deviatoric components of the stress tensor are obtained from the following relation: The parameter X is equal to 0 in the case of elastic deformation. In the case of plastic deformation, it can be found using the von Mises yield criterion: P c = P0a2P + P0a2W- Y0 /2 + 2 b - 1)1^2 + + p0a 2 [2(1 - y 0/2)(b - 1) + 3(b - 1)2]a3 +y 0P0E, P = V0/(V - Vt ) - 1, D = a + bu where dSij dSj d t~ = ^ t ~ - S ikW Jk - S j k W ik , 2W j = d v i / d x j - d v i / d x j ■ SjSj = 2/3 a 2. 110 ISSN 0556-171X. npo6n.eubi npounocmu, 2002, N2 3 Computer Simulation o f Normal and Oblique Impacts Here G is the shear modulus and о is the dynamic yield strength. These parameters are obtained with the help of the following relations: G = G0 [1 + cp(1 + ,a)1/3 + d(T - 300)] V3 /(VT + V3) when T < Tm , G = 0 for T > Tm, о = о 0 [1 + cp(1 + ц ) 1/3 + d(T - 300)](1 - VT /V4) when T < Tm and VT < V4, о = о p when VTK < VT < V4 and T < Tm , о = 0 when T > Tm or VT > V4 or о < p ̂ . Here Tm is the substance melting temperature, о w is the stress in a shock wave, c, d, Vз, and V4 are material constants defined experimentally. The temperature is calculated according to [5]: T = (E - Eox ) cp = [E - Eo - E1 ̂ - ( - E 1 + E2^ 2 - - (E1 - 2E2 + E3)̂ 3 - (-E1 + 3E2 - 3E3 + E4 )̂ 4]/cp, Eo =- 300cp, E 1 = y0Eo. E2 = (a2 + УоEoV2, E 3 = (46a 2 + у 0 E 0 )/16, E 4 = (-2y 0 2 + 18b 2 a 2 + у 4 E 0 )/24, where cp is the specific heat, and E0x is the cold component of the specific internal energy. To investigate the effects of fracture and temperature in a ceramic target during oblique impact of yawed projectiles in the range of velocities up to 4000 m/s, a number of simulations were performed. The interaction of a steel cylinder 7.6 mm in diameter and 50.8 mm in height with a 10 mm thick AD995 plate was modeled. The model parameters for AD995 ceramics were adjusted using the data from plate impact experiments. The characteristics of the AD995 plate employed in computations were [6] as follows: p0 = 3890 kg/m , о0 = 4.7 GPa, G0 = 160.0 GPa, V1 = 1.46• 10-6 m3/kg, V2 = 0.875-10-7 m3/kg, V3 = 5.83• 10-5 m3/kg, V4 = 1.75• 10-4 m3/kg, K4 = 0.5 (m-s)/kg, Pk = 0.45 GPa, a = 7700 m/s, b = 1.3, c = 10560 m/s, Tm = 2327 K, VTK = 1.0 • 10-5 m3/kg, d = 1.6'10K, cp = 775.2 J/(kg • K), у 0 = 1.32, оp = 0.3 GPa, pfr = - 8.8 GPa. The characteristics of the steel were: p0 = 7850 kg/m3, о0 = 1.01 GPa, G0 = 79 GPa, V1 = 9.2-10-6 m3/kg, V2 = 5.7 -10-7 m3/kg, V3 = 2.55•Ю-5 m3/kg, V4 = 6.37 • 10-5 m3/kg, K4 = 0.54 (m • s)/kg, Pk = - 1.5 GPa, a = 4400 m/s, b = 1.55, c = 206 GPa, d = 1.6-10 K, cp = 446.7 J/(kg-K), у0 = 1.91. ISSN 0556-171X. Проблемы прочности, 2002, N 23 111 V. A. Gorel’skii Results of Numerical Calculations. Computations have been made for the yaw up to 100. Figure 1 shows configurations of the projectile and plate during interaction at the impact velocity 4000 m/s for the obliquity 45° and yaw 10° at 10 s. In this case, the computation evidences that the process of perforation is observed and completed within 15 ,ws. Fig. 1. Penetration processes at the im pact velocity 4000 m /s for the obliquity 45° and yaw 10°. Figure 2 shows the histories of resistance force components during penetration at the impact velocity 4000 m/s for the 45° obliquity. The curves show that at the initial moment the vertical components of resistance forces are larger. Beyond 6 ,ws, the horizontal components of the resistance forces are larger for both angles of the yaw. Fig. 2. H istories o f resistance force com ponents during penetration at the im pact velocity 4000 m/s for the obliquity 45°: (1) F2, yaw = 0°; (1) F2, yaw = 10°; (2) F3, yaw = 0°; (2 ) F3, yaw = 10°. We investigated the histories of temperature near the contact surface in the target and projectile. The results obtained show that the temperature effects are important for the impact velocity range over 4000 m/s and they are more pronounced for the ceramic target. To further investigate the ceramic model, the contours of specific volume of cracks were generated. The computations show that the maximum damage occurred in the bottom of the ceramic target near the impact axis for both angles of the yaw and only for the 10° yaw in the surface layer of the ceramics near the leading edge of the projectile-target interaction region. The effect of the yaw on fracture was clearly pronounced. 112 ISSN 0556-171X. npoôëeMbi npounocmu, 2002, N 3 Computer Simulation o f Normal and Oblique Impacts In conclusion it may be said that the results of numerical simulations using the shock-wave-propagation-based finite-element code revealed that both temperature effects and fracture of ceramics are important at the velocity 4000 m/s. We established the stages in the penetration process, the surfaces and contours of temperature and specific volume of cracks for various instants of time. The results show that the temperature effects in ceramic targets are clearly pronounced for the impact velocity 4000 m/s. It was revealed that during the second stage of penetration the values of the horizontal components of the resistance forces are larger than the values of their vertical components. This results in the normalization of the vector velocity of the projectile mass center during the second stage of the penetration process at the 45° obliquity. The research was supported by the Russian Foundation for Basic Research (Grant No. 99-03-32200). Р е з ю м е На основі методу скінченних елементів досліджувалася просторова задача взаємодії при ударі по нормалі та під кутом снаряда з керамічною пласти­ ною при швидкості до 4000 м/с. Представлено удосконалену модель кера­ міки AD955 Alumina, яка враховує температурну взаємодію. Використову­ ється також модель пошкодженого середовища, для якої характерна можли­ вість моделювання виникнення і розвитку тріщини в умовах ударного навантаження. У процесі числового моделювання руйнування керамічної пластини при високій швидкості було використано кінетичну модель руйну­ вання активного типу, яку розроблено раніше для моделювання руйнування різних матеріалів. 1. V. A. Gorel’skii and S. A. Zelepugin, “Numerical simulation of powder compaction under an axially symmetric impact,” Poroshk. Metal., No. 4, 11 - 16 (1992). 2. V. A. Gorel’skii, I. E. Khorev, and N. T. Yugov, “Dynamics of a three-dimensional process of asymmetric interjection between deformable bodies and a rigid wall,” Prikl. Mekh. Tekh. Fiz., No. 4, 112 - 118 (1985). 3. V. A. Gorel’skii and S. A. Zelepugin, “Mathematical simulation of fracture of ceramic obstacles in axially symmetric high-velocity impact,” Probl. Prochn., No. 5-6, 87 - 94 (1995). 4. V. A. Gorel’skii and S. A. Zelepugin, “Vortex structures in ceramics under high velocity impact,” Tech. Phys. Lett., 23, No. 24, 86 - 90 (1997). 5. W. H. Gust, “High impact deformation of metal cylinders at elevated temperatures,” J. Appl. Phys., 53, No. 5, 3566 - 3575 (1982). 6. R. Subramanian and S. J. Bless, “Penetration of semi-infinite AD995 Alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s,” Int. J. Impact Eng., 17, 807 - 816 (1995). R eceived 14. 11. 2001 ISSN 0556-171X. Проблеми прочности, 2002, № 3 113