Об одном методе решения пространственной задачи теории упругости в перемещениях

Предлагается новый метод решения пространственной задачи теории упругости в перемещениях. В основу метода положено уравнение равновесия в форме Тедоне. В отличие от способов Бетти и Черрути-Буссинеска, в рамках описываемого подхода не требуется предварительно определять объемное расширение. С цел...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Проблемы прочности
Datum:2003
Hauptverfasser: Бородачев, Н.М., Астанин, В.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2003
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/46986
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Об одном методе решения пространственной задачи теории упругости в перемещениях / Н.М. Бородачев, В.В. Астанин // Проблемы прочности. — 2003. — № 3. — С. 62-69. — Бібліогр.: 7 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Предлагается новый метод решения пространственной задачи теории упругости в перемещениях. В основу метода положено уравнение равновесия в форме Тедоне. В отличие от способов Бетти и Черрути-Буссинеска, в рамках описываемого подхода не требуется предварительно определять объемное расширение. С целью иллюстрации метода рассмотрены первая и вторая краевые задачи для упругого изотропного полупространства. Запропоновано новий метод розв’язку просторової задачі теорії пружності в переміщеннях, що базується на рівнянні рівноваги у формі Тедоне. На відміну від методів Бетті і Черруті-Буссінеска у рамках описаного підходу немає потреби попередньо визначати об’ємне розширення. Із метою ілюстрації методу розглянуто першу та другу крайові задачі для пружного ізотропного півпростору. A new solution method for a 3D problem of the elasticity theory in displacements has been proposed. The method is based on the Tedone equilibrium equation. As distinct from the procedures of Betti and Cerrutti-Boussinesq, the described approach does not require volume expansion be previously evaluated. For the illustration, the first and second boundary- value problems for an elastic isotropic half-space have been considered.
ISSN:0556-171X