Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций

Сформулирована смешанная проекционно-сеточная схема решения нелинейных краевых задач теории малых упругопластических деформаций. Исследована корректность и сходимость смешанных аппроксимаций для напряжений, деформаций и перемещений. Подробно изучены свойства проектирующих операторов, на основе че...

Full description

Saved in:
Bibliographic Details
Published in:Проблемы прочности
Date:2004
Main Author: Чирков, А.Ю.
Format: Article
Language:Russian
Published: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2004
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/47135
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций / А.Ю. Чирков // Проблемы прочности. — 2004. — № 6. — С. 59-86. — Бібліогр.: 11 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-47135
record_format dspace
spelling Чирков, А.Ю.
2013-07-10T04:11:44Z
2013-07-10T04:11:44Z
2004
Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций / А.Ю. Чирков // Проблемы прочности. — 2004. — № 6. — С. 59-86. — Бібліогр.: 11 назв. — рос.
0556-171X
https://nasplib.isofts.kiev.ua/handle/123456789/47135
539.3
Сформулирована смешанная проекционно-сеточная схема решения нелинейных краевых задач теории малых упругопластических деформаций. Исследована корректность и сходимость смешанных аппроксимаций для напряжений, деформаций и перемещений. Подробно изучены свойства проектирующих операторов, на основе чего сформулировано условие, обеспечивающее существование, единственность и устойчивость решения дискретной задачи. Представлены результаты анализа применения численного интегрирования. Оценки сходимости и точности базируются на теории обобщенных функций и методах функционального анализа.
Сформульовано змішану проекційно-сіткову схему розв’язку нелінійних крайових задач теорії малих пружно-пластичних деформацій. Досліджено коректність і збіжність змішаних апроксимацій для напружень, деформацій та переміщень. Детально вивчено властивості проектуючих операторів, на основі чого сформульовано умову, що забезпечує існування, єдиність і стійкість розв’язку дискретної задачі. Наведено результати аналізу використання числового інтегрування. Оцінки збіжності і точності базуються на теорії узагальнених функцій та методиках функціонального аналізу.
A mixed projection-mesh scheme for the solution of nonlinear boundary problems of the theory of small elastic-plastic strains has been formulated. Correctness and convergence of the mixed approximations for stresses, strains, and displacements have been analyzed. The properties of projection operators are studied in detail, and on the basis of the results obtained, a condition has been formulated, which ensures the existence, uniqueness, and stability of the solution to a discrete problem. Application of the numerical integration has been analyzed and the obtained results are presented. The correctness and convergence estimates are based on the theory of generalized functions and the functional analysis method.
ru
Інститут проблем міцності ім. Г.С. Писаренко НАН України
Проблемы прочности
Научно-технический раздел
Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
Mixed Projection-Mesh Scheme of the Finite-Element Method for the Solution of the Boundary-Value Problems of the Theory of Small Elastic-Plastic Strains
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
spellingShingle Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
Чирков, А.Ю.
Научно-технический раздел
title_short Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
title_full Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
title_fullStr Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
title_full_unstemmed Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
title_sort смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций
author Чирков, А.Ю.
author_facet Чирков, А.Ю.
topic Научно-технический раздел
topic_facet Научно-технический раздел
publishDate 2004
language Russian
container_title Проблемы прочности
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
format Article
title_alt Mixed Projection-Mesh Scheme of the Finite-Element Method for the Solution of the Boundary-Value Problems of the Theory of Small Elastic-Plastic Strains
description Сформулирована смешанная проекционно-сеточная схема решения нелинейных краевых задач теории малых упругопластических деформаций. Исследована корректность и сходимость смешанных аппроксимаций для напряжений, деформаций и перемещений. Подробно изучены свойства проектирующих операторов, на основе чего сформулировано условие, обеспечивающее существование, единственность и устойчивость решения дискретной задачи. Представлены результаты анализа применения численного интегрирования. Оценки сходимости и точности базируются на теории обобщенных функций и методах функционального анализа. Сформульовано змішану проекційно-сіткову схему розв’язку нелінійних крайових задач теорії малих пружно-пластичних деформацій. Досліджено коректність і збіжність змішаних апроксимацій для напружень, деформацій та переміщень. Детально вивчено властивості проектуючих операторів, на основі чого сформульовано умову, що забезпечує існування, єдиність і стійкість розв’язку дискретної задачі. Наведено результати аналізу використання числового інтегрування. Оцінки збіжності і точності базуються на теорії узагальнених функцій та методиках функціонального аналізу. A mixed projection-mesh scheme for the solution of nonlinear boundary problems of the theory of small elastic-plastic strains has been formulated. Correctness and convergence of the mixed approximations for stresses, strains, and displacements have been analyzed. The properties of projection operators are studied in detail, and on the basis of the results obtained, a condition has been formulated, which ensures the existence, uniqueness, and stability of the solution to a discrete problem. Application of the numerical integration has been analyzed and the obtained results are presented. The correctness and convergence estimates are based on the theory of generalized functions and the functional analysis method.
issn 0556-171X
url https://nasplib.isofts.kiev.ua/handle/123456789/47135
citation_txt Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций / А.Ю. Чирков // Проблемы прочности. — 2004. — № 6. — С. 59-86. — Бібліогр.: 11 назв. — рос.
work_keys_str_mv AT čirkovaû smešannaâproekcionnosetočnaâshemametodakonečnyhélementovdlârešeniâkraevyhzadačteoriimalyhuprugoplastičeskihdeformacii
AT čirkovaû mixedprojectionmeshschemeofthefiniteelementmethodforthesolutionoftheboundaryvalueproblemsofthetheoryofsmallelasticplasticstrains
first_indexed 2025-12-07T13:24:14Z
last_indexed 2025-12-07T13:24:14Z
_version_ 1850856025479970816