Stress intensity solutions for cracked plates by the dual boundary method

This paper presents the application o f the dual boundary element method for the determination o f stress intensity factors in plate bending problems. The loadings considered include internal pressure, and also combined bending and tension. Mixed mode stress intensity factors are evaluated by a crac...

Full description

Saved in:
Bibliographic Details
Published in:Проблемы прочности
Date:2007
Main Authors: Sahli, A., Boutchicha, D., Belarbi, A., Rahmani, O.
Format: Article
Language:English
Published: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/48100
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Stress intensity solutions for cracked plates by the dual boundary method / A. Sahli, D. Boutchicha, A. Belarbi, O. Rahmani // Проблемы прочности. — 2007. — № 5. — С. 81-93. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-48100
record_format dspace
spelling Sahli, A.
Boutchicha, D.
Belarbi, A.
Rahmani, O.
2013-08-15T08:27:51Z
2013-08-15T08:27:51Z
2007
Stress intensity solutions for cracked plates by the dual boundary method / A. Sahli, D. Boutchicha, A. Belarbi, O. Rahmani // Проблемы прочности. — 2007. — № 5. — С. 81-93. — Бібліогр.: 15 назв. — англ.
0556-171X
https://nasplib.isofts.kiev.ua/handle/123456789/48100
539.4
This paper presents the application o f the dual boundary element method for the determination o f stress intensity factors in plate bending problems. The loadings considered include internal pressure, and also combined bending and tension. Mixed mode stress intensity factors are evaluated by a crack surface displacement extrapolation technique and the J-integral technique. The boundary element results for the case studies considered in the paper have been compared with either analytical or finite element results and in all cases good agreement has been achieved.
Описано застосування методу подвійних граничних елементів для визначення коефіцієнтів інтенсивності напружень у задачах, що пов’язані зі згином пластин. Умови навантаження включають внутрішній тиск та комбінацію згину з розтягом. Коефіцієнти інтенсивності напружень для змішаних мод оцінюються за допомогою методу екстраполяції переміщення поверхні тріщини та методу J-інтеграла. Результати розрахунків методом граничних елементів для досліджуваних випадків навантаження порівнюються із даними аналітичних чи скінченноелементних розрахунків. Отримано їх хорошу збіжність.
Описано применение метода двойных граничных элементов для определения коэффициентов интенсивности напряжений в задачах, связанных с изгибом пластин. Исследуемые условия нагружения включают внутреннее давление и комбинацию изгиба с растяжением. Коэффициенты интенсивности напряжений для смешанных мод оцениваются с помощью метода экстраполяции перемещения поверхности трещины и метода J-интеграла. Результаты расчетов методом граничных элементов, полученные для рассматриваемых случаев нагружения, сравниваются с данными аналитических или конечноэлементных расчетов. Получено их хорошее соответствие.
en
Інститут проблем міцності ім. Г.С. Писаренко НАН України
Проблемы прочности
Научно-технический раздел
Stress intensity solutions for cracked plates by the dual boundary method
Расчет напряженно-деформированного состояния пластин с трещинами методом двойных граничных элементов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Stress intensity solutions for cracked plates by the dual boundary method
spellingShingle Stress intensity solutions for cracked plates by the dual boundary method
Sahli, A.
Boutchicha, D.
Belarbi, A.
Rahmani, O.
Научно-технический раздел
title_short Stress intensity solutions for cracked plates by the dual boundary method
title_full Stress intensity solutions for cracked plates by the dual boundary method
title_fullStr Stress intensity solutions for cracked plates by the dual boundary method
title_full_unstemmed Stress intensity solutions for cracked plates by the dual boundary method
title_sort stress intensity solutions for cracked plates by the dual boundary method
author Sahli, A.
Boutchicha, D.
Belarbi, A.
Rahmani, O.
author_facet Sahli, A.
Boutchicha, D.
Belarbi, A.
Rahmani, O.
topic Научно-технический раздел
topic_facet Научно-технический раздел
publishDate 2007
language English
container_title Проблемы прочности
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
format Article
title_alt Расчет напряженно-деформированного состояния пластин с трещинами методом двойных граничных элементов
description This paper presents the application o f the dual boundary element method for the determination o f stress intensity factors in plate bending problems. The loadings considered include internal pressure, and also combined bending and tension. Mixed mode stress intensity factors are evaluated by a crack surface displacement extrapolation technique and the J-integral technique. The boundary element results for the case studies considered in the paper have been compared with either analytical or finite element results and in all cases good agreement has been achieved. Описано застосування методу подвійних граничних елементів для визначення коефіцієнтів інтенсивності напружень у задачах, що пов’язані зі згином пластин. Умови навантаження включають внутрішній тиск та комбінацію згину з розтягом. Коефіцієнти інтенсивності напружень для змішаних мод оцінюються за допомогою методу екстраполяції переміщення поверхні тріщини та методу J-інтеграла. Результати розрахунків методом граничних елементів для досліджуваних випадків навантаження порівнюються із даними аналітичних чи скінченноелементних розрахунків. Отримано їх хорошу збіжність. Описано применение метода двойных граничных элементов для определения коэффициентов интенсивности напряжений в задачах, связанных с изгибом пластин. Исследуемые условия нагружения включают внутреннее давление и комбинацию изгиба с растяжением. Коэффициенты интенсивности напряжений для смешанных мод оцениваются с помощью метода экстраполяции перемещения поверхности трещины и метода J-интеграла. Результаты расчетов методом граничных элементов, полученные для рассматриваемых случаев нагружения, сравниваются с данными аналитических или конечноэлементных расчетов. Получено их хорошее соответствие.
issn 0556-171X
url https://nasplib.isofts.kiev.ua/handle/123456789/48100
citation_txt Stress intensity solutions for cracked plates by the dual boundary method / A. Sahli, D. Boutchicha, A. Belarbi, O. Rahmani // Проблемы прочности. — 2007. — № 5. — С. 81-93. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT sahlia stressintensitysolutionsforcrackedplatesbythedualboundarymethod
AT boutchichad stressintensitysolutionsforcrackedplatesbythedualboundarymethod
AT belarbia stressintensitysolutionsforcrackedplatesbythedualboundarymethod
AT rahmanio stressintensitysolutionsforcrackedplatesbythedualboundarymethod
AT sahlia rasčetnaprâžennodeformirovannogosostoâniâplastinstreŝinamimetodomdvoinyhgraničnyhélementov
AT boutchichad rasčetnaprâžennodeformirovannogosostoâniâplastinstreŝinamimetodomdvoinyhgraničnyhélementov
AT belarbia rasčetnaprâžennodeformirovannogosostoâniâplastinstreŝinamimetodomdvoinyhgraničnyhélementov
AT rahmanio rasčetnaprâžennodeformirovannogosostoâniâplastinstreŝinamimetodomdvoinyhgraničnyhélementov
first_indexed 2025-11-26T01:45:59Z
last_indexed 2025-11-26T01:45:59Z
_version_ 1850606843218362368
fulltext UDC 539.4 Stress Intensity Solutions for Cracked Plates by the Dual Boundary Method A. Sahli, D. Boutchicha, A. Belarbi, and O. Rahmani Département de Génie Mécanique (USTO), Oran, Algérie УДК 539.4 Расчет напряженно-деформированного состояния пластин с трещинами методом двойных граничных элементов A. Сахли, Д. Бучича, А. Беларби, О. Рахмани Отделение технической механики, Оран, Алжир Описано применение метода двойных граничных элементов для определения коэффициентов интенсивности напряжений в задачах, связанных с изгибом пластин. Исследуемые условия нагружения включают внутреннее давление и комбинацию изгиба с растяжением. Коэф­ фициенты интенсивности напряжений для смешанных мод оцениваются с помощью мето­ да экстраполяции перемещения поверхности трещины и метода J-интеграла. Результаты расчетов методом граничных элементов, полученные для рассматриваемых случаев нагру­ жения, сравниваются с данными аналитических или конечноэлементных расчетов. Получено их хорошее соответствие. К л ю ч е в ы е с л о в а : коэффициент интенсивности напряжений, метод гранич­ ных элементов, изгиб пластин, J -интеграл. In troduc tion . Stress intensity factor solutions for several simple plate geometries loaded by tension and bending are available in a parametric form [1, 2]. However, for more general cases involving more complex geometry, numerical methods such as the boundary element m ethod (BEM) or the finite element method (FEM) m ust be used for evaluation o f fracture mechanics parameters. Therefore, there have been considerable developments in the use o f the BEM for fracture analysis and there are m any examples o f its use for linear elastic fracture mechanics (LEFM) [3, 4]. A n alternative approach is to use the dual boundary element method (DBEM) with a single region being used in the analysis and one crack face being m odeled using the displacement boundary integral equation and the other crack face being m odeled using the traction boundary integral equations. The DBEM therefore requires no subregioning and eliminates the singular algebraic equations. The purpose o f the present paper is to illustrate the effectiveness o f the DBEM for the LEFM analysis o f plate bending problems. The DBEM is used to analyze several crack configurations in plates, including center crack, edge crack and cracks emanating from a hole in a finite w idth plate loaded by either bending and tension or uniform pressure, and the K l , K n , and K ш stress intensity factors are presented. The results for the case studies discussed in this paper have © A. SAHLI, D. BOUTCHICHA, A. BELARBI, O. RAHMANI, 2007 ISSN 0556-171X. Проблемы прочности, 2007, N 5 81 A. Sahli, D. Boutchicha, A. Belarbi, and O. Rahmani been compared with either analytical or finite element results and in all cases the boundary element results are in good agreement with the results from alternative sources. 1. Plate Bending Equations. Reissner’s [5, 6] plate bending equations are used to obtain the fundamental solutions for the boundary integral equations: * A iju j + bi _ 0 (1) where A j is the Navier operator and can be expressed as D(1 — v) A* Aa P _ 2 2 .2 c (1+ V) d 2 (V 2 — 22)<5aP + (------ ) ---------- ( ) ap (1 — v ) adxp (2a) * * D(1 V) 2 ^ A“3 = —A- 3 _ — — ■ (2b) 2 where V is the Laplace operator and bt represents the loading on the plate, vq ,a b a _ l 2(1 — V ) , (2d) b3 _ q. (2e) In Eqs. (1), (2a)-(2e), v is Poisson’s ratio, q is the distributed load on the plate surface, d ap is the Dirac delta function, and D and 2 are given by the following equations: E h 3 D _ 1 2 ^ ' (3a) (3b) h in which E is Young’s module and h is the plate thickness. 2. The Dual Boundary Integral Equations. The dual equations, on which the dual boundary element method is based, are the displacement and the traction boundary integral equations. The displacement boundary integral equations for Reissner plate model were reported in [7]. The traction integral equations for Reissner plates have been reported independently in [8] and [9]. In this paper, these boundary integral equations are used. The boundary integral representation 82 ISSN 0556-171X. npo6n.eMH npounocmu, 2007, N 5 Stress Intensity Solutions for Cracked Plates of the displacement components wt can be written for an internal source point X ' as wt (X ') + J Pjj (X ', x )w j(x )dT(x) = J W j (X ', x )p j (x)dT(x) + + J(W i*(X ', X ) - \ W *,a (X ', X ))q3(X )dQ (X ), (4) Q (1-V M where wa are rotations of x- and y-axes, respectively, w3 is out of plane displacement, p j are bending moment and shear tractions, respectively, and q3 is internal pressure. Roman indices vary from 1 to 3 and Greek indices vary from * * 1 to 2. The values P j (X ', x ) and W j (X ', x ) represent the Reissner plate fundamental solutions at the boundary point x . The above integrals are regular provided r ^ 0. If the point X ' is placed at the boundary, that is X ' ^ x' G T , the distance r tends to zero and, in the limit, the fundamental solutions exhibit singularities. Assuming that the displacements Wj satisfy the Holder continuity, Eq. (4) for the source points on the boundary can be written as follows: Cj (x ')Wj (x ') + J P j (x', x )Wj (x )dT(x ) = J W j (x', x ) p j (x )dT(x ) + +J(W *3(x', X ) - ------ - 2 < >a(x', X ))q3(X )d Q (X ), (5) Q (1-V M where the integral in the left hand side denotes a Cauchy principal value integral, x ', x e r are source and field points, respectively, and €„(x') are the jump 1 terms. The term C j(x') is equal to —o „ when x' is located on a smoothj 2 j boundary. By applying the divergence theorem, the last domain integral in (5) can be transferred to boundary integral, in the case of a uniform load (q3 = const) to give: / (Wf*3(x', X ) - \ W*,a (x', X ))q3(X )dQ (X ) = q ( 1 - ^ ) A = q 3 J (Vi,a (x' , x ) ----- 772 Wia (x ' , x ))n a (x )dF(x ), (6) r ( 1 - v )A where V*a are the particular solutions of the equation V*dd = W *3. The stress resultant components are obtained by differentiation of equation (4) with respect to the coordinate of the source point X ' and then substituting them into the stress displacement relations for Reissner plate theory to give: ISSN 0556-171X. npoôëeMbi npounocmu, 2007, N9 5 83 A. Sahli, D. Boutchicha, A. Belarbi, and O. Rahmani M a,0(X ') = J W«0k(X ' , x )Pk(x)dr(x) - J P«0k(X ' , x )w k (x )d r(x ) + r r vv + q J Q«0( X ' ,x )d r (x ) + - — Tryqà a 0 r ( 1 - v ) A (7) Q0(X 0 = J W3*0*(X ' , x )P k (x )dr(x) - J P30k(X ' , x)wk(x)dr(x) + r + q J Q«9( X ' , x )d r(x X where M a 0 and Q 0 are bending moment and shear force stress resultants, respectively. * *The kernels W jk , Pjk are obtained from linear combination of derivatives H* H* , of W j and P j , respectively, and Q ^ - from linear combination of derivatives * * of Wi3 and Wi0 e . By moving the source point X ' to the boundary and multiplying all the terms by the unit outward normal ng to the boundary at the source point x', the traction integral equations are obtained as follows: - p a (x ) + n g ( x ' ) J P«0y ( x ', x )wy ( x )d r( x ) + n g ( x' ) J ( x x )w 3 ( x )d r( x ) = 2 r r = n 0 (x ')J Wa0y (x' , x )P / (x )dr(x ) + n 0 (x ' )J Wa0y (x' , x )P 3(x )dr(x ) + r r * 1 qv + qn0 (x ' )J Q«0( x \ x)d r(x ) + - ~ — TT2 na (x'X (8) r 2 (1- v ) A v ' - P 3 (x) + n0 (x' ) J P3*0y (x ' , x)wy (x )dr(x) + n0(x' ) J P3*03(x ' , x)w3(x)dr(x) = 2 r r = n 0 (x' ) J W3*0y ( x ' , x ) Py (x )dr(x ) + n 0 (x' ) J W3*03 ( x ' , x ) P 3(x )d r( x ) + + qn 0 (x' ) J Q 3*0 (x' , x )d r( x ), (9) where p a = M «9 and p 3 = Q 9«9 . The second integral in the left hand side stands for the Hadamard principal value integral. Equations (8)-(9) represent three traction integral equations, and together with the three displacement integral equations in Eq. (5) form the dual boundary integral formulation. 84 ISSN 0556-171X. npoôëeMbi npounocmu, 2007, N 5 Stress Intensity Solutions for Cracked Plates 3. Numerical Implementation. In order to implement the DBEM numerically, the boundary including crack surfaces are discretized into elements. The general modelling strategies used in this work are similar to those used in [10] and can be summarized as follows: (i) crack boundaries are modelled with discontinuous quadratic elements, as shown in Fig. 1 to satisfy continuity conditions of displacements and its derivatives in all nodes for the existence of principal value integrals; in such a way that each node of one of the crack surfaces is coincident with the node on the opposite surface; (ii) the traction equations (8)-(9) are applied for collocation on one of the crack surfaces; (iii) the displacement equation (5) are applied for collocation on the opposite crack surface and the other non-crack boundaries; (iv) continuous quadratic elements are applied along the remaining boundary of the body, except at the intersection between a crack and an edge, where discontinuous or semidiscontinuous ones are required on the edge, in order to avoid a common node at intersection, and also at boundary corner, where semidiscontinuous elements are preferred, in order to avoid a common node at the corner. Fig. 1. Dual boundary element model [(D) displacement equation; (T) traction equation; (•) element node]. This simple strategy is robust and allows the DBEM to effectively model general edge or embedded crack problems; on the other hand, crack tips, crack- edge corners and crack kinks require no special treatment, since they are not located at nodal points where the collocation is carried out. 4. Stress Intensity Factors Evaluation. The stress resultant intensity factors K i, K 2 , and K 3 are usually used instead of the stress intensity factors K I, K II, and K III. The relationship between the stress resultant intensity factors and the stress intensity factors are [11]: The stress resultant intensity factors can be evaluated in several ways. In this work, the /-integral technique is employed to calculate the stress resultant intensity factors. The path independent /-integral is defined for plate bending as corner [12]: ISSN 0556-171X. npoôneMbi nponnocmu, 2007, № 5 85 A. Sahli, D. Boutchicha, A. Belarbi, and O. Rahmani J db = f (Wb - qw3 )ndd r - f P i w i,dd? + f q,dw3dQ. ( i d r r Q The strain energy density for plate bending, Wb, is defined as 1 Wb = ~ I M afi wa ,fi + w fia + Q a (wa + w3,a ) (12) where wt j is the strain tensor, and na are the components of the unit outward normal to the contour path. To decouple the related stress intensity factors of a mixed mode problem from /-integral, an extension of a simple procedure which has been developed in [13] based on the decomposition of the elastic fields into symmetric and anti-symmetric mode component is used (Fig. 2). Using this procedure, only one component of /-integral is required. Fig. 2. Symmetric and anti-symmetric moment and shear force stress resultants at two points located symmetrically relative to the crack axis. The relationship between the component of /-integral in x 1 direction and the stress resultant intensity factors for plate bending is given as / 1b — 12rt 1b E h3 h 2 K 12 + K 22 + 10(1 + V )K 32 (13) The decomposition of the elastic fields are as follows: M 11 M 12 22M Q 1 Q 2s m 11 + m 11 M 12 _ M 12 M 22 + M 2 2 Q 1 + Q1 Q 2 - Q2 M AS' M 11 - M 11 M1 1 ’ — 2 * M 12 + M 12 m AS M 22 - M 22 Q1AS Q1- Q1 Q AS Q 2 + Q2 (14) 86 ISSN 0556-171X. npoôëeMbi npounocmu, 2007, N9 5 Stress Intensity Solutions for Cracked Plates Applying the decomposition procedure, the integral J j can be represented by the sum of two integrals as follows: (15) where the superscript indicates the pertinent deformation mode. Finally, the stress intensity factors are obtained from the following relationship: rS _ r I _ 12^ K 1 J 1 b _ J 1 b _ 2 Eh 3 TAS _ rII , rIII _ J 1 b _ J 1 b + J 1 b _ 12j i Eh3 K 22 + 10 . (16) To split mode II and mode III components from J j^ f , the displacement ratio as proposed in [14] are used 48 r— Aw1 _ w1(+180°) _ w1(-180°) _ Eh W 2r K 2 , 3 _ w3(+180°) w3(-180°) 24(1 + v ) 5Eh Awi 10 K 2 Aw3 (j+ v )h 2 K 3 Substituting Eq. (19) into Eq. (16) the following relations hold: (17) (18) (19) AS _ 12^ (1+ v ) K 2 J 1 b _ -- K * or J 10 AS _ 12^ (1+ v ) K 2 h 2(1 + v ) (Aw1 x2 10Eh ^Aw3 +1 1b Eh3 1+ 10 A w -i h 2(1 + v )^ Awj (20) (21) To implement this procedure into the boundary element analysis, a circular contour path around the crack tip is defined as a set of internal points located at symmetrical positions relative to the crack plane, as shown in Fig. 3. The numerical integration along the contour path is accomplished using the trapezoidal rule. 5. Case Studies. 5.1. Square Plate with a Central Crack and Edge Twisting Moments (Fig. 4). An infinite plate subjected to twisting moments, as shown in Fig. 4, is considered in this case study. Because of the symmetrical nature of the loading and geometry, only half of the plate was analyzed, with the line of symmetry being perpendicular to the crack. The boundary conditions on the line of symmetry were assumed to be x j = 0, 0 2 = M 11 = w = 0. 2 ISSN 0556-171X. npoôëeMbi npounocmu, 2007, N9 5 87 A. Sahli, D. Boutchicha, A. Belarbi, and O. Rahmani P' Fig. 3. Local crack tip coordinate reference system and contour path for the /-integral. 2 a Fig. 4. Plate with edge twisting moments. h/aVlO Fig. 5. Normalized intensity factors for plate with edge twisting [lines correspond [11]; (A ) quarter point; (□ ) /-integral]. In this case study Young’s modulus was assumed to be 2-105 MPa with Poisson’s ratio being set to zero. Results are given in Fig. 5 for the quarter point and the J-integral methods for a range of crack lengths and one plate thickness for the normalized moment and shear force intensity factors F 2 and F 3 , which are obtained from the following equations: ,7 K 2 F2 _ . , ^ (22)MoV a 88 ISSN 0556-171X. npoôneMû npoHuocmu, 2007, № 5 Stress Intensity Solutions for Cracked Plates (1 + v )hK 3 M пл/löaF 3 Ayr .R e d • (23) The DBEM results are also compared in Fig. 5 with Sih’s [2] analytical results. The J-integral results for F 2 and F 3 are also presented in Table 1. T a b l e 1 Normalized Moment and Shear Force Intensity Factors for a Cracked Plate Subjected to Twisting Moment Calculated from /-Integral Paths h F 2 F 3 a-J 1 0 Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 0 . 1 0 0 0.2301 0.2207 0.2123 0.1242 0.1191 0.1146 0.125 0.2794 0.2727 0.2663 0.1253 0.1223 0.1194 0.250 0.4164 0.4141 0.4126 0.1056 0.1050 0.1046 0.500 0.5961 0.5933 0.5932 0.0684 0.0681 0.0681 0.750 0.7166 0.7132 0.7136 0.0457 0.0455 0.0455 1 . 0 0 0 0.7942 0.7905 0.7911 0.0305 0.0303 0.0304 1.250 0.8295 0.8254 0.8260 0.0198 0.0197 0.0197 1.500 0.8321 0.8279 0.8282 0.0126 0.0125 0.0125 5.2. Cantilever Rectangular Plate with Edge Moment, Central Crack, and Central Hole (Fig. 6). Results are given in Fig. 7 for this case study for a range of crack lengths and two plate thicknesses. The results for the F 1 normalized intensity factors have been obtained using the quarter point and the /-integral methods. The DBEM results have been verified using a 500-element FEM model. The /-integral results for this case study are also shown in Table 2. Fig. 6 . Cantilever plate with internal crack and internal hole. The normalized stress intensity factor, Fx, is related to the moment intensity factor K 1 by the expression j-, K i F i 12 /— (24)qb V a ISSN 0556-171X. Проблемы прочности, 2007, Ms 5 89 A. Sahli, D. Boutchicha, A. Belarbi, and O. Rahmani T a b l e 2 Normalized Moment Intensity factors for a Plate with a Central Crack and a Hole Subjected to Edge Moment Calculated from /-Integral Paths a h h d —j= = 1.0 aV 10 —j= = 0.1 aV 10 Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 0.1 1.1841 1.1852 1.1853 1.3265 1.3338 1.3372 0.2 1.0965 1.0973 1.0974 1.3122 1.3146 1.3147 0.3 1.0671 1.0672 1.0672 1.3219 1.3229 1.3245 0.4 1.0658 1.0659 1.0658 1.3495 1.3493 1.3493 0.5 1.0845 1.0844 1.0927 1.3926 1.3928 1.4028 0.6 1.1230 1.1228 1.1313 1.4591 1.4591 1.4689 0.7 1.1890 1.1977 1.0846 1.5623 1.5754 1.4050 0.8 1.3088 1.3177 1.1981 1.7355 1.7482 1.5668 0.9 1.5883 1.4657 - 2.1172 1.9153 - Fig. 7. Normalized intensity factors for a plate with internal crack and internal hole [(□ ) quarter point; (A ) FEM; lines correspond J-integral: (1) h/dVlO = 1.0; (2) h /dV l0 = 0.1]. 5.3. Rectangular T-Shaped Plate with Edge Moment and Edge Cracks (Fig. 8). This case study comprises a cantilever T-shaped plate subjected to a uniformly distributed bending moment with perpendicular edge cracks at the junction of the T as shown in Fig. 8. DBEM quarter point, stress extrapolation and J-integral results for the F normalized intensity factor for a range of crack lengths and a single plate thickness are presented in Fig. 9. The J-integral results for this case study are also given in Table 3. 90 Fig. 8. T-shaped cantilever plate. ISSN 0556-171X. Проблемы прочности, 2007, № 5 Stress Intensity Solutions for Cracked Plates T a b l e 3 Normalized Moment Intensity for a Cantilever T-Shaped Plate Calculated for /-Integral Paths a Fi b Path 1 Path 2 Path 3 0.1 0.2828 0.2862 0.2828 0.2 0.3112 0.3114 0.3142 0.3 0.3489 0.3481 0.3539 0.4 0.3758 0.3753 0.3788 0.5 0.3980 0.3978 0.4003 0.6 0.4171 0.4168 0.4195 0.7 0.4354 0.4349 0.4377 0.8 0.4565 0.4561 0.4590 0.9 0.4841 0.4837 0.4865 0.5393 0 0 2 0 4 0 6 0 8 I a/b Fig. 9. Normalized intensity factors for a T-shaped cantilever plate. 6. Discussion of Results. Results are presented graphically in Figs. 5, 7, and 9 for the various normalized intensity factors for the case studies shown in Figs. 4, 6, and 8. Plates with a range of crack lengths, loading conditions, plan forms and boundary conditions were analyzed to investigate the effectiveness of the DDEM for the evaluation of the stress intensity factors in cracked plates. The displacement extrapolation, quarter point, stress extrapolation and /-integral methods have been used to calculate the moment and shear force intensity factors and in all cases the DBEM results are in close agreement with each other. Moreover, the DBEM results for the first case study (Fig. 4) are in good agreement with results obtained by Sih [2], who used the FEM in conjunction with the /-integral method to evaluate the stress intensity factors at the crack tip. However, for the third case study (Fig. 8), the FEM model with its 500 elements compares unfavourably with the DBEM model, which required only 40 boundary elements. Quarter point elements were used at the crack tip for the finite element study and the /-integral approach was used to evaluate the stress intensity factors at the crack tip. For this case study, the DBEM and the FEM results are in good agreement. Tables 1-3 give details of the normalized intensity factors for the various case studies investigated. The results show a high degree of stability for each /-integral path for all crack lengths, plate thicknesses, loading conditions and boundary conditions. ISSN 0556-171X. HpoôneMbi npouHocmu, 2007, № 5 91 A. Sahli, D. Boutchicha, A. Belarbi, and O. Rahmani The values of the normalized crack tip intensity factors which are presented in this paper can be converted to bending moment, twisting moment, and shear force intensity factors, K 1, K 2, and K 3, from which Eq. (10) can be used to evaluate the stress intensity factors, K j, K n , and K ш , at the crack tip. Conclusions. The application of the DBEM for the LEFM analysis of plate bending problems is discussed. The method has been extended in this paper to enable the stress intensity factors in plate bending problems to be evaluated. In particular, the displacement ratio approach for the evaluation of /-integrals for three-dimensional fracture analysis has been developed further to deal with /-integrals arising in the fracture analysis of plate bending problems. Results for the normalized intensity factors for a number of case studies, including plates with cracks at boundary discontinuities are presented. The displacement, bending moments and twisting moments for the plates under consideration were evaluated using the DBEM. These DBEM results were then used in conjunction with the /-integral method to determine the normalized stress intensity factors at the crack tips. The crack tip stress intensity factors can then be evaluated from the normalized intensity factors. The BEM results were compared with either analytical or finite element results and in all cases the DBEM results were in good agreement with the results from alternative sources. Р е з ю м е Описано застосування методу подвійних граничних елементів для визначен­ ня коефіцієнтів інтенсивності напружень у задачах, що пов’язані зі згином пластин. Умови навантаження включають внутрішній тиск та комбінацію зги­ ну з розтягом. Коефіцієнти інтенсивності напружень для змішаних мод оці­ нюються за допомогою методу екстраполяції переміщення поверхні тріщини та методу /-інтеграла. Результати розрахунків методом граничних елементів для досліджуваних випадків навантаження порівнюються із даними аналітич­ них чи скінченноелементних розрахунків. Отримано їх хорошу збіжність. 1. Y. Murakami (Ed.), Stress Intensity Factors. Handbook, Pergamon Press, Oxford (1987). 2. G. C. Sih (Ed.), Mechanics o f Fracture, Vol. 3. Plate and Shells with Cracks, Noordhoff, Leyden (1977). 3. M. H. Aliabadi, D. J. Cartwright, D. W. Naehring, and W. H. Davey, “Stress intensity weight factor functions for cracks at holes and half plane,” in: C. A. Brebbia and J. J. Connor (Eds.), Proc. of 11th Int. Conf. on Boundary Element Methods, Computational Mechanics Publications, Southampton (1989), Vol. 3, pp. 83-98. 4. B. Stok and B. Bukovec, “Stress intensity factor analysis in cracked elastic bars under torsion by the boundary element method,” in: C. A. Brebbia and J. J. Connor (Eds.), Proc. of 11th Int. Conf. on Boundary Element Methods, Computational Mechanics Publications, Southampton (1989), Vol. 3, pp. 111­ 112. 92 ISSN 0556-171X. Проблеми прочности, 2007, № 5 Stress Intensity Solutions for Cracked Plates 5. E. Reissner, “On the bending of elastic plates,” Quart. Appl. Math., 5, 55-68 (1947). 6. B. J. Karam and J. C. F. Teiles, “On boundary elements for Reissner’s plate theory,” Eng. Anal. Bound. Elements, 5, 21-27 (1985). 7. F. van der Weeen, “Application of the boundary integral equation method to Reissner’s plate model,” Int. J. Num. Meth. Eng., 18, 1-10 (1982). 8. Y. F. Rashed, M. H. Aliabadi, and C. A. Brebbia, “Hyper singular boundary element formulation for Reissner’s plates,” Int. J. Solids Struct., 35, 2229­ 2249 (1998). 9. S. Y. Ahmadi-Brooghani and J. L. Wearing, “The application of the dual boundary element method in linear elastic crack problem in plate bending,” in: Proc. of 18th Int. Conf. on Boundary Element Methods, C. A. Brebbia, J. B. Martins, M. H. Aliabadi, and N. Haie (Eds.), Computational Mechanics Publications, Portugal (1996), pp. 429-438. 10. A. Portela, M. H. Aliabadi, and D. P. Rooke, “The dual boundary element method: effective implementation for crack problems,” Int. J. Num. Meth. Eng., 33, 1269-1287 (1992). 11. T. Dirgantara, Boundary Element Analysis o f Crack in Shear Deformable Plates and Shells, PhD Thesis, Department of Engineering, Queen Mary and Wesfield College, University of London (2000). 12. H. Sosa and G. Herrmann, “On invariant integrals in the analysis of cracked plates,” Int. J. Fract., 40, 111-126 (1989). 13. M. H. Aliabadi, “Evaluation of mixed mode stress intensity factors using the path independent J-integral,” in: Proc. of 12th Int. Conf. on Boundary Elements in Engineering (Hokaido, Japan), Computational Mechanics Publications, Southampton (1990). 14. R. H. Rigby and M. H. Aliabadi, “Mixed mode J-integral method for analysis of 3D fracture problems using BEM,” Eng. Anal. Bound. Elements, 11, 239-256 (1993). 15. Y. Mi, and M. H. Aliabadi, “Dual boundary element method for three dimensional crack growth analysis,” nn: C. A. Brebbia and J. J. Rencis (Eds.), Proc. o f 15th Int. Conf. on B oundary E lem en t M ethods, Computational Mechanics Publications, Southampton (1993), pp. 249-260. Received 10. 05. 2007 ISSN 0556-171X. npoôëeMbi npounocmu, 2007, N 5 93