Fracture toughness of multilayer pipes

Multilayer pipes composed of various materials improve partially the properties of a pipe system and are frequently used in service. To estimate the lifetime of these pipes the basic fracture parameters have to be measured. In the contribution a new approach to this estimation is presented. Special...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Nezbedova, E., Fiedler, L., Majer, Z., Vlach, B., Knesl, Z.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2008
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/48421
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Fracture toughness of multilayer pipes / E. Nezbedova, L. Fiedler, Z. Majer, B. Vlach, Z. Knesl // Проблемы прочности. — 2008. — № 1. — С.146 -149. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-48421
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-484212025-02-09T14:10:39Z Fracture toughness of multilayer pipes Трещиностойкость многослойных труб Nezbedova, E. Fiedler, L. Majer, Z. Vlach, B. Knesl, Z. Научно-технический раздел Multilayer pipes composed of various materials improve partially the properties of a pipe system and are frequently used in service. To estimate the lifetime of these pipes the basic fracture parameters have to be measured. In the contribution a new approach to this estimation is presented. Special type of a C-shaped inhomogeneousfracture mechanics specimen machined directlyfrom a pipe has been proposed, numerically analyzed and tested. The corresponding K values are calculated by FEM and fracture toughness values of HDPE pipes material are obtained. Многослойные трубы, состоящие из различ­ных материалов, позволяют частично повы­сить свойства систем трубопроводов и часто применяются на практике. Для оценки долго­ вечности таких труб необходимо определить их основные параметры разрушения. Пред­ставлен новый подход к выполнению такой оценки. Предлагается специальный тип не­ однородного С-образного образца, вырезаемо­го непосредственно из трубы, для исследова­ния методами механики разрушения; выполнен численный анализ и проведены испытания. Расчет соответствующих значений К выполнен методом конечных элементов. Полу­чены величины трещиностойкости материа­ла труб из полиэтилена высокой плотности. The authors gratefully acknowledge the support provided by the Grant Agency of the Czech Republic (No. 101/05/0227) for this work. 2008 Article Fracture toughness of multilayer pipes / E. Nezbedova, L. Fiedler, Z. Majer, B. Vlach, Z. Knesl // Проблемы прочности. — 2008. — № 1. — С.146 -149. — Бібліогр.: 10 назв. — англ. 0556-171X https://nasplib.isofts.kiev.ua/handle/123456789/48421 539.4 en Проблемы прочности application/pdf Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Nezbedova, E.
Fiedler, L.
Majer, Z.
Vlach, B.
Knesl, Z.
Fracture toughness of multilayer pipes
Проблемы прочности
description Multilayer pipes composed of various materials improve partially the properties of a pipe system and are frequently used in service. To estimate the lifetime of these pipes the basic fracture parameters have to be measured. In the contribution a new approach to this estimation is presented. Special type of a C-shaped inhomogeneousfracture mechanics specimen machined directlyfrom a pipe has been proposed, numerically analyzed and tested. The corresponding K values are calculated by FEM and fracture toughness values of HDPE pipes material are obtained.
format Article
author Nezbedova, E.
Fiedler, L.
Majer, Z.
Vlach, B.
Knesl, Z.
author_facet Nezbedova, E.
Fiedler, L.
Majer, Z.
Vlach, B.
Knesl, Z.
author_sort Nezbedova, E.
title Fracture toughness of multilayer pipes
title_short Fracture toughness of multilayer pipes
title_full Fracture toughness of multilayer pipes
title_fullStr Fracture toughness of multilayer pipes
title_full_unstemmed Fracture toughness of multilayer pipes
title_sort fracture toughness of multilayer pipes
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2008
topic_facet Научно-технический раздел
url https://nasplib.isofts.kiev.ua/handle/123456789/48421
citation_txt Fracture toughness of multilayer pipes / E. Nezbedova, L. Fiedler, Z. Majer, B. Vlach, Z. Knesl // Проблемы прочности. — 2008. — № 1. — С.146 -149. — Бібліогр.: 10 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT nezbedovae fracturetoughnessofmultilayerpipes
AT fiedlerl fracturetoughnessofmultilayerpipes
AT majerz fracturetoughnessofmultilayerpipes
AT vlachb fracturetoughnessofmultilayerpipes
AT kneslz fracturetoughnessofmultilayerpipes
AT nezbedovae treŝinostojkostʹmnogoslojnyhtrub
AT fiedlerl treŝinostojkostʹmnogoslojnyhtrub
AT majerz treŝinostojkostʹmnogoslojnyhtrub
AT vlachb treŝinostojkostʹmnogoslojnyhtrub
AT kneslz treŝinostojkostʹmnogoslojnyhtrub
first_indexed 2025-11-26T17:22:33Z
last_indexed 2025-11-26T17:22:33Z
_version_ 1849874456584912896
fulltext UDC 539. 4 F r a c tu r e T o u g h n e s s o f M u lt i la y e r P ip e s E . N ezb ed o v a ,1a L . F ied ler ,2 b Z . M a jer ,2,3c B . V lach ,2 d and Z . K n esl3,e 1 Faculty o f Chemistry, Institute o f Materials Science, Brno University o f Technology, Bmo, Czech Republic 2 Faculty o f Mechanical Engineering, Brno Technical University, Brno, Czech Republic 3 Institute of Physics o f Materials, Academy of Science o f the Czech Republic, Brno, Czech Republic a nezbedova@fch.vutbr.cz, b fidlub@post.cz, c majer@ipm.cz, d vlach@fme.vutbr.cz, e knesl@ipm.cz Multilayer pipes composed o f various materials improve partially the properties o f a pipe system and are frequently used in service. To estimate the lifetime o f these pipes the basic fracture parameters have to be measured. In the contribution a new approach to this estimation is presented. Special type o f a C-shaped inhomogeneous fracture mechanics specimen machined directly from a pipe has been proposed, numerically analyzed and tested. The corresponding K values are calculated by FEM and fracture toughness values o f HDPE pipes material are obtained. K eyw o rd s : polyethylene pipes, fracture toughness, K-calibration. In troduction . P olyethylene (H DPE) and polypropylene (PP) materials can be considered m odern and ecologic; they substitute for conventional pipe materials (steel, cast-iron). This progress is fo llow ed by relevant legislation (international standards, profession directives, national codes, etc.). A ccording to these standards the lifetim e o f the new est bim odal type o f HDPE [1] is expected to be up to 100 years. This long lifetim e is guaranteed on ly i f tubes are strained w ith just inner overpressure. Unfortunately, there are other factors in service, w hich can reduce this lifetim e [2, 3]. These extraordinary circum stances can evoke creation o f the stress raisers that can lead to form ing o f a crack and then to brittle failure o f the w hole pipe system . U sing the fracture m echanics approaches [4 -6 ] there have been developed m ethods and procedures w hich are able to evaluate the resistance o f both native material and pipes from the v iew o f a slow [7] and rapid crack growth [8]. The developm ent o f n ew materials has supported novel technologies, w hich could not be used so far in laying o f n ew tubes and sanitation [9]. The so-called m ultilayer pipes have received a w ider acceptance recently in the field o f p ipes system s. The purpose o f the developm ent w as to im prove partially the properties profile o f p ipes from nonchained polyethylene by com bining w ith other materials. This m ethod has essentially resulted in tw o types o f pipes: (i) p ipes w ith dim ensional addition o f a protective surface and (ii) pipes w ith a dim ensionally integrated protective surface. In our contribution w e have focused on the second type o f m ultilayer pipes and its lifetim e expectation. Specifically , the fracture toughness w as chosen as a relevant parameter for evaluation o f a pipe material resistance to a so-called slow crack growth (SCG). This type o f fracture occurs under long-term service conditions and lim its the lifetim e. To estimate fracture toughness o f the pipe material a special inhom ogeneous C-shaped specim en m achined directly from the pipe (Fig. 1a) w as proposed and numerically analyzed. B ased on the num erical results the fracture m echanics parameters K g d were estimated for tw o different temperatures. E xp erim en ta l. The three-layer com m ercial plastic pipe W avin TS ( 0 1 1 0 SD R11) w ith its outer and inner layers m ade o f an extrem ely durable PE material (X SC 50) and its interlayer PE 100 w as chosen as experim ental material. The thickness o f both inner and outer layers w as 2 .5 m m and that o f the interlayer w as 5 m m (Fig. 1b). © E. N EZB ED O V A , L. FIEDLER, Z. MAJER, B. VLACH, Z. KNESL, 2008 146 ISSN 0556-171X. Проблемы прочности, 2008, № 1 mailto:nezbedova@fch.vutbr.cz mailto:fidlub@post.cz mailto:majer@ipm.cz mailto:vlach@fme.vutbr.cz mailto:knesl@ipm.cz Fracture Toughness o f Multilayer Pipes Fig. 1. C-shaped specimen and the experimental setup used for the fracture toughness measurements (a); schematic o f the three-layer pipe (b). The material m echanical characteristics (tensile m odulus E and y ield stress o y ) o f individual layers w ere determ ined from standard tensile tests carried out according to standard C SN E N ISO 527-1. Tensile test specim ens w ere directly cut from the pipe in the longitudinal direction o f the pipe. Tests were carried out on the universal testing m achine Z w ick Z 020. The load w as m easured using 2.5 kN dynam om eter and deform ation was determ ined using an extensom eter w ith accuracy class 0.5. The testing conditions were as fo llow s: in itial gauge length 20 m m , temperature 23°C and — 60oC, and crosshead speed 1 m m /m in. The obtained values o f tensile m odulus E and y ield stress o y are sum marized in Table 1. T a b l e 1 The Mechanical Characteristics o f the Pipe Layers Temperature, 0 C E, MPa a , MPa Inner/outer layer Intermediate layer Inner outer layer Intermediate layer x/ s x s x/ s xj s 23 827/34 1213/28 16 1 20 0 -6 0 2740/99 3399/91 45/0 48 0 Note. Here and in Table 2: x is the mean value and s is a corresponding standard deviation. Fracture m echanics characteristics were determ ined using the tw o types o f instrumented Charpy im pact testers. The first one w as a high-energy im pact tester PSW 300E/M FL w ith im pact energy 150 J. The second w as a low -energy im pact tester Fraktoskop K4J w ith im pact energy 4 J (Fig. 1a). The notches were m ade b y pressing a fresh razor blade into the specim ens. The test conditions on the both types o f im pact testers were as follow s: test temperature 23°C and — 60°C, im pact rate 1 m /s, and span distance 40 mm. The specim en 10 m m thick w as tested on the high-energy im pact tester, w hile the specim en o f 4 m m thickness w as tested on the low -energy im pact tester. N otches o f three different depths (3.8, 4 .6 , and 5.6 m m ) were m ade on 4-m m -thick specim ens. In the case o f 10-m m -thick specim ens the notches were o f the sam e depth - 4 .6 mm. In all cases the crack tips w ere located in the interlayer PE 100 material. The resulting values o f dynamic fracture toughness K Qd w ere calculated according to the equation K Qd = a W )' Here F max is the m axim um load, S is the span distance, B and W are the thickness and width, respectively, a is the notch depth, and f ( a /W ) is a geom etric factor. The ISSN 0556-171X. npoôëeubi npounocmu, 2008, N 1 147 E. Nezbedova, L. Fiedler, Z. Majer, et al. geom etric factor is know n on ly for a hom ogeneous standard three-point bend specim en [9, 10]. The function f (a /W ) corresponding to the used C-shaped inhom ogeneous three layers specim en has to be calculated numerically. N u m erica l M odel. The num erical m odel corresponds to the experim ental setup. The material data correspond to those g iven in Table 1. The num erical analyses were carried out under plane strain conditions by using a finite elem ent m ethod as im plem ented in the standard A N S Y S 10.0 system . To estim ate the corresponding values o f stress intensity factor K i the standard K -CA LC procedure im plem ented in A N S Y S has been applied. A s a result, the values o f K I w ere obtained and the corresponding function f (a /W ) was estimated according to Eq. (1), see Fig. 2. The geom etric factor corresponding to the standard three-point bend specim en is added for com parison. N ote that the f ( a / W ) values are practically independent o f P o isson ’s ratio. U sing Eq. (1) and the results presented in Fig. 2, the values o f the dynam ic fracture toughness were estim ated (Table 2). N ote that according to the A ST M standard the on ly valid value o f K ic is obtained for temperature — 60oC and for the specim en thickness B 2 = 10 mm. The values o f dynam ic fracture toughness for tw o different specim en thicknesses and for temperatures 23°C and — 60°C, determ ined using tw o types o f instrumented Charpy im pact testers, are g iven in Table 2. T a b l e 2 Resulting Values of Dynamic Fracture Toughness for Two Different Specimen Thicknesses Thickness, mm B1 = 4 2B =1 0 a , mm 3.8 4.6 5.6 4.6 Temperature, 0 C K Qd , MPa • m1/2 x/s x/s X s x/s 23 3.0/0.4 2.0/0.3 1.2/0.1 2.4/0.2 — 60 2.4/0.2 1.8/0.3 1.1/0.6 3.5/0.1 0 --------------------1--------------------1--------------------1-------------------- 0.3 Q.4 0.5 0.6 0.7 a/w Fig. 2. Correction function f (ajW ) for a C-type specimen (middle layer): (!) homogeneous specimen; (2) temperature T = —60°C; (5) temperature T = 23°C; (4) standard three-point bend specimen [9, 10]. C onclusions. We have studied the lifetim e expectation o f the three-layer com m ercial plastic pipe with dim ensionally integrated protective surfaces w as investigated. The fracture toughness is chosen as a relevant parameter for evaluation o f the pipe material 148 ISSN 0556-171X. npo6n.eubi npounocmu, 2008, N 1 Fracture Toughness o f Multilayer Pipes resistance to a slow crack growth. To evaluate fracture toughness values o f the interlayer PE 100 pipe material the fo llow ing steps have been made: • the material parameters (tensile m odulus E and y ield stress o y ) for both inner and outer layers o f the three layers pipe w ere determ ined for temperatures 23°C and - 6 0 oC; • a new inhom ogeneous C-shaped fracture m echanics specim en m achined directly from the pipe has been used and the corresponding values o f the stress intensity factor K represented by the geom etric factor f (a /W ) have been calculated by FEM; • the values o f dynam ic fracture toughness for tw o different specim en thicknesses and for temperatures 23°C and — 60oC were determ ined using tw o types o f instrumented Charpy im pact testers Acknowledgments. The authors gratefully acknowledge the support provided by the Grant Agency o f the Czech Republic (No. 101/05/0227) for this work. 1. E. Nezbedova, A. Zahradnlckova, and Z. Salajka, “Brittle failure versus structure o f HDPE pipe grades,” J. Macromol. Sci. - Physics, B40 (384), 507-515 (2001). 2. J. Hessel, “Mindesbendsdauer von erdverlegten Rohen aus Polyethylen ohne Sandeinbettung,” Sonderdruck aus 3R International; 40 Jahrgang, Heft 4 (2001), SS. 178-184. 3. A. L. Ward, X. Lu, Y. Huang, and N. Brown, Polymer Testing, 11, 309 (1992). 4. M. Fleipner, “Langsames Risswachstum und Zeitstandfestingkeit von Rohren aus Poly­ ethylene,” Kunststoffe, 77, No. 1, 45-50 (1987). 5. S. J. Ritchie, P. Davis, and P. S. Leevers, “Brittle-tough transition of rapid crack propagation in polyethylene,” Polymer, 39, 6657-6663 (1998). 6. ISO/CD 16770: Plastics. Determination o f Environmental Stress Cracking (ESC) o f Polyethylene (PE), Full Notch Creep Test (FNCT) and ISO/CD 16 241: Notch Tensile Test to Measure the Resistance to Slow Crack Growth o f Polyethylene Materials fo r Pipe and Fitting Products (PENT). 7. ISO 13477:1997 Thermoplastics Pipes fo r the Conveyance o f Fluids. Determination o f Resistance to Rapid Crack Propagation (RCP). Small-Scale Steady-State Test (S4 Test). 8. Y. Savidus, “Progresivni postupy pouzivane pri vystavbe potrubnich vedeni z plastu,” 10 rocnik mezinarodni konference Plasty v Rozvodech Plynu [in Czech], Sbornik referätü, Praha (2003), str. 233. 9. ISO 13586: Determination o f Fracture Toughness (Gc and K c). Linear Elastic Fracture Mechanics (LEFM) Approach. 10. W. Grellmann, S. Seidler, und W. Hesse, MPK-Prozedur: Prüfung von Kunststoffen - Instrumentierter Kerbschlagbiegeversuch, Merseburg (2005). Received 28. 06. 2007 ISSN 0556-171X. npoöxeMU npouHocmu, 2008, № 1 149