Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3

We analyze the influence of small modification of chemical composition of G200CrMoNi4-3-3 cast steel on the morphology of carbides and on material crack resistance. Using the Termo-Calc software the volume fraction of carbide phase was determined and the results correlated with microstructure observ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Stradomski, Z., Pirek, A., Dyja, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2008
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/48430
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3 / Z. Stradomski, A. Pirek, D. Dyja // Проблемы прочности. — 2008. — № 1. — С. 137-140. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-48430
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-484302025-02-23T17:56:10Z Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3 Влияние морфологии карбидов на вязкость разрушения литой стали G200CrMoNi4-3-3 Stradomski, Z. Pirek, A. Dyja, D. Научно-технический раздел We analyze the influence of small modification of chemical composition of G200CrMoNi4-3-3 cast steel on the morphology of carbides and on material crack resistance. Using the Termo-Calc software the volume fraction of carbide phase was determined and the results correlated with microstructure observations. Crack resistance of cast steel was determined using SENB specimens and finding critical values of stress intensity factor KQ. Metallographic and fractographic observations of fracture surfaces allowed identifying the mechanism of cracking. Исследуется влияние незначительной моди­фикации химического состава литой стали G200СгМоNi4-3-3 на морфологию карбидов и трещиностойкость материала. С исполь­зованием расчетной программы Termo-Calc были выполнены оценка объемной доли карбидной фазы и сравнительный анализ полученных результатов с данными микрструктурных исследований. Трещиностой­кость литой стали исследовалась на образ­цах с краевой трещиной, для которых определялись критические значения коэффициента интенсивности напряжений KQ. Металлографические и фрактографические исследования поверхностей разрушения по­зволили определить механизм трещинообразования. 2008 Article Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3 / Z. Stradomski, A. Pirek, D. Dyja // Проблемы прочности. — 2008. — № 1. — С. 137-140. — Бібліогр.: 6 назв. — англ. 0556-171X https://nasplib.isofts.kiev.ua/handle/123456789/48430 539.4 en Проблемы прочности application/pdf Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Stradomski, Z.
Pirek, A.
Dyja, D.
Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3
Проблемы прочности
description We analyze the influence of small modification of chemical composition of G200CrMoNi4-3-3 cast steel on the morphology of carbides and on material crack resistance. Using the Termo-Calc software the volume fraction of carbide phase was determined and the results correlated with microstructure observations. Crack resistance of cast steel was determined using SENB specimens and finding critical values of stress intensity factor KQ. Metallographic and fractographic observations of fracture surfaces allowed identifying the mechanism of cracking.
format Article
author Stradomski, Z.
Pirek, A.
Dyja, D.
author_facet Stradomski, Z.
Pirek, A.
Dyja, D.
author_sort Stradomski, Z.
title Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3
title_short Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3
title_full Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3
title_fullStr Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3
title_full_unstemmed Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3
title_sort influence of carbides morphology on fracture toughness of cast steel g200crmoni4-3-3
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2008
topic_facet Научно-технический раздел
url https://nasplib.isofts.kiev.ua/handle/123456789/48430
citation_txt Influence of carbides morphology on fracture toughness of cast steel G200CrMoNi4-3-3 / Z. Stradomski, A. Pirek, D. Dyja // Проблемы прочности. — 2008. — № 1. — С. 137-140. — Бібліогр.: 6 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT stradomskiz influenceofcarbidesmorphologyonfracturetoughnessofcaststeelg200crmoni433
AT pireka influenceofcarbidesmorphologyonfracturetoughnessofcaststeelg200crmoni433
AT dyjad influenceofcarbidesmorphologyonfracturetoughnessofcaststeelg200crmoni433
AT stradomskiz vliâniemorfologiikarbidovnavâzkostʹrazrušeniâlitojstalig200crmoni433
AT pireka vliâniemorfologiikarbidovnavâzkostʹrazrušeniâlitojstalig200crmoni433
AT dyjad vliâniemorfologiikarbidovnavâzkostʹrazrušeniâlitojstalig200crmoni433
first_indexed 2025-11-24T05:34:30Z
last_indexed 2025-11-24T05:34:30Z
_version_ 1849648711783677952
fulltext UDC 539. 4 I n f lu e n c e o f C a r b id e s M o r p h o lo g y o n F r a c tu r e T o u g h n e s s o f C a s t S te e l G 2 0 0 C r M o N i4 -3 -3 Z . S trad om sk i,1a A . P irek ,1b and D . D y ja 1,c 1 Czestochowa University o f Technology, Institute of Materials Engineering, Czestochowa, Poland a zbigniew@mim.pcz.czest.pl, b pireka@mim.pcz.czest.pl, c dyjad@mim.pcz.czest.pl We analyze the influence o f small modification o f chemical composition o f G200CrMoNi4-3-3 cast steel on the morphology o f carbides and on material crack resistance. Using the Termo-Calc software the volume fraction o f carbide phase was determined and the results correlated with microstructure observations. Crack resistance o f cast steel was determined using SENB specimens and finding critical values o f stress intensity factor K q . Metallographic and fractographic observations o f fracture surfaces allowed identifying the mechanism o f cracking. K e y w o rd s : fracture toughness, hardness, carbides, rolls. In trod u ction . A specific and separate group o f tool materials is represented by steels and cast steels for m ill rolls. Hypereutectoid steels are largely represented in this group, in w hich the abrasion resistance is guaranteed by large carbide precipitates according to the fo llow ing Zum Gahr equation [1]: j3 /2 T/ w = H r ' ( 1) w here d is size o f carbides, VV is volum e fracture, X is m ean free path, and W is wear resistance. Substantial initial diameters o f rolls as w ell as the need o f m achining related to the surface wear or changes in the pass geom etry m ake that the heat treatment o f those cast steels is very limited. It is reduced m ost often to norm alizing and stress-relief annealing. H ow ever, not too hard pearlitic matrix under conditions o f dry friction show s very good resistance to abrasive wear, w hat is indicated by literature data [1 -3 ] and ow n authors’ research [4, 5]. Cast steels containing substantial amounts o f carbon have a drawback consisting in the presence o f large carbide precipitates, w hich create more or less continuous network o f ledeburite and hypereutectoid cem entite. Such microstructure, though favorable from the point o f v iew o f tribological properties, strongly reduces the material crack resistance [3, 6]. Taking into consideration the above aspects o f microstructure, w e have used parameters o f fracture m echanics to optim ize the structure o f G 200C rM oN i4-3-3 cast steel. The paper has been focused on determination o f the influence o f sm all m odification o f chem ical com position o f G 200C rM oN i4-3-3 cast steel on the m orphology o f carbides and the material crack resistance. M a ter ia ls and M eth od ology . High-carbon low -a lloy cast steel has been used in the investigation, in w hich diversified carbides content w as obtained through small modification o f chem ical com position resulting, how ever, in substantial increased in volum e fraction o f carbide phase. The material for studies w as taken from upper neck o f m ill rolls w eigh ing around 10000 kg. The chem ical com position (in m ass %) o f studied G 200C rM oN i4-3-3 cast steels w as specified in Table 1. R esidual stresses and the character o f microstructure w ere analyzed after the as-cast rolls have been subjected to long-term heat treatment (about 160 h) consisting o f normalizing and tempering at a temperature below • Based on the chemical composition © Z. STR A D O M SK I, A. P IR EK , D. D Y JA , 2008 ISSN 0556-171X. Проблемы прочности, 2008, № 1 137 mailto:zbigniew@mim.pcz.czest.pl mailto:pireka@mim.pcz.czest.pl mailto:dyjad@mim.pcz.czest.pl Z. Stradomski, A. Pirek, and D. Dyja o f exam ined heats the transformation temperatures o f eutectic (E ', C ) and eutectoid (S ) transformation have been determ ined using the Termo-Calc computer software. Volume fractions o f primary carbides Vyiedeburite and o f hypereutectoid cem entite VV FeaC have been determined, taking into account also the normalizing temperature (point in A c line). T a b l e 1 Chemical Composition of the Cast Steels Rolls C Mn Si P S Cr Ni Mo Cu 1 1.89 0.58 0.42 0.028 0.007 1.15 0.58 0.З7 0.09 2 2.10 0.54 0.58 0.0З8 0.010 1.59 0.48 0.52 0.11 З 2.12 0.72 0.55 0.017 0.005 1.1З 0.74 0.З8 0.12 4 2.16 0.67 0.56 0.025 0.016 1.07 0.62 0.З9 0.14 5 2.20 0.59 0.5З 0.019 0.006 1.11 0.65 0.40 0.11 6 2.22 0.74 0.61 0.026 0.010 1.06 0.64 0.З7 0.12 R esults. The influence o f carbide-forming elem ents on the position o f transformation temperatures and carbides volum e fractions is specified in Table 2. The obtained results have been confirm ed by microstructural analysis o f selected rolls. Som e o f micrographs are presented in Fig. 1. T a b l e 2 The Influence of Carbide-Forming Elements on the Position of Transformation Temperatures of Fe-Fe3C System and Carbides Volume Fractions Rolls Chemical compositions Point o f Fe-C Vy yy M yy C Cr Mo E C ' S ' ledeburite Fe3C ledeburite + Fe3C % % C % % 1 1.89 1.15 0.37 2.021 4.3745 1.38 0 10.90 10.9 2 2.10 1.43 0.52 2.006 4.3725 1.34 4.14 16.63 20.8 З 2.12 1.1З 0.38 2.020 4.3750 1.34 4.43 17.14 21.6 4 2.16 1.07 0.39 2.019 4.3749 1.34 6.36 18.18 24.5 5 2.20 1.11 0.40 2.018 4.3746 1.34 8.36 19.24 27.6 6 2.22 1.06 0.37 2.021 4.3752 1.34 9.23 19.78 29.0 Fig. 1. Microstructure of the G200CrMoNi4-6-3 cast steel. 138 ISSN 0556-171Х. Проблемы прочности, 2008, № 1 Influence o f Carbides Morphology on Fracture Toughness Precipitations o f transformed ledeburite in the cast steel o f heat 1, show n in Fig. 1a, in w hich according to Table 2 the eutectic reaction should not occur, result from segregation processes ensued by solidification o f m assive castings. The fraction o f cem entite eutectic, low ered by precipitations o f hypereutectoid cem entite, increases from the value o f 11 to 29% in cast steel 5 containing 2.22% C 1.06% Cr, and 0.37% M o (Fig. 1). Very sm all changes in carbide-form ing elem ents contents have a significant influence on carbides amount and morphology. A s compared to the as-cast state, the norm alizing causes d issolution o f part o f thick network o f hypereutectoid cem entite, also in a W idmannstatten microstructure. Hardness w as measured b y the B rinell m ethod according to the PN -E N ISO 6506-1:2002 standard under a load o f 7355 N w ith a steel ball o f a diameter o f 5 mm. The results are specified in Fig. 2. W ith increasing volum e fraction o f carbide phase (ledeburite and hypereutectoid cem entite precipitated in the form o f more or less continuous network) the propensity for brittle fracture propagation increases in the structure. The crack resistance o f cast steel w ith diversified content o f carbide phase w as evaluated based on the stress intensity factor K q , determ ined in accordance w ith A ST M E 399-90 recom m endations. SEN B specim ens, w ith dim ensions 8 0 X 10X 20m m and m echanically cut 10 m m depth notch, were tested by three-point bending. R esults o f tests carried out on an M T S-810 testing m achine are presented in Fig. 3. Fig. 2 Fig. 3 Fig. 2. Influence o f the carbon content on the hardness. Fig. 3. Influence o f the chemical composition on the fracture toughness. Fig. 4 Fig. 5 Fig. 4. Microstructure o f the cast steel below notch in SENB specimens. Fig. 5. SEM microphotographs of the cast steel. ISSN 0556-171X. npoôneMbi npoHHocmu, 2008, № 1 139 Z. Stradomski, A. Pirek, and D. Dyja Approxim ately 200% growth in the carbide phase amount, precipitated m ainly at primary boundaries o f austenite grains, is accom panied by around 25% decrease in K q value. Strong decline in K q o f roll 2 results from substantial amount o f phosphorus precipitated in the form o f brittle phosphorus eutectic, revealed both b y m icroscopic and fractographic examinations. The m echanism o f cracking w as analyzed using a scanning and optical m icroscope on m etallographic m icrosections taken from regions below the specim ens notch root. The results o f observations show that the fracture proceeds along the network o f transformed ledeburite and precipitations o f hypereutectoid cem entite (Fig. 4), w hile it goes through the pearlitic matrix on ly in short sections. Fractographic exam inations (Fig. 5) confirm observations o f the material m icro­ structure. The material is cracking both along grain boundaries ‘decorated’ w ith carbides, w hat is frequently accom panied by brittle fracture, as w ell as through pearlite grains, cracking in a ductile m ode. D uctile m echanism o f pearlite cracking is caused m ainly by fine globular precipitations o f secondary carbides. C onclu sions 1. Increase in carbon content from 1.89% to 2.22% caused a tw o-tim es increase in the volum e fraction o f ledeburite and hypereutectoid cem entite, precipitated in the form o f more or less continuous network. 2. Two-tim es increase in the content o f carbide phase precipitated in the form o f network resulted in around 20% increase in hardness, parallel to crack resistance decreased by 25%. 3. L ow value o f stress intensity factor K q for heat 2 resulted from the presence o f phosphorus eutectic in the alloy misrostructure. 4. The higher than recom m ended phosphorus content, in particular in high-carbon cast steels, results in substantial increase in their brittleness and m ay cause a premature damage to the roll. 1. K. H. Zum Gahr, “Microstructure and wear o f materials,” in: Tribology, Series 10, Elsevier, Amsterdam (1987), pp. 227-252. 2. Y. S. Liao and R. H. Shiue, “Effect o f carbide orientation on abrasion of high Cr white cast iron,” Wear, 193, 16-24 (1996). 3. You Wang, Tingquan Lei, and Jiajun Liu, “Tribo-metallographic behavior o f high carbon steels in sliding,” Wear, 231, 1-11 (1999). 4. Z. Stradomski and S. Stachura, “Role o f microstructure in the mechanism o f abrasive wear of high-carbon steel,” Acta Metall. Slovaca, R. 8, No. 2/2, 388-393 (2002). 5. Z. Stradomski, S. Stachura, A. Pirek, and P. Chmielowiec, “The affect o f the amout of primary carbides on the wear resistance o f the G200CrMoNi4-6-3 (L200 HNM) cast steel,” Inzynieria Materialowa, No. 3, XX-XXIII (2004). 6. S. C. Lim, M. F. Ashby, and J. H. Brunton, “Wear-rate transitions and their relationship to wear mechanisms,” Acta Metall., 35, No. 6, 1343-1348 (1991). Received 28. 06. 2007 140 ISSN 0556-171X. npo6neMbi nponuocmu, 2008, № 1