Identification method of structural defects in glass fiber fabric/epoxy resin laminate

We present the experimental methods proposed for the identification of structural defects of the laminate constituted of 12 layers of glass fiber fabric/epoxy resin. Two techniques of control were used to analyze the principal structural defects (local or global disorientation). The first tech...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Проблемы прочности
Дата:2009
Автор: Naceri, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2009
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/48511
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Identification method of structural defects in glass fiber fabric/epoxy resin laminate / A. Naceri // Проблемы прочности. — 2009. — № 6. — С. 119-124. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-48511
record_format dspace
spelling Naceri, A.
2013-08-20T12:06:44Z
2013-08-20T12:06:44Z
2009
Identification method of structural defects in glass fiber fabric/epoxy resin laminate / A. Naceri // Проблемы прочности. — 2009. — № 6. — С. 119-124. — Бібліогр.: 7 назв. — англ.
0556-171X
https://nasplib.isofts.kiev.ua/handle/123456789/48511
539.4
We present the experimental methods proposed for the identification of structural defects of the laminate constituted of 12 layers of glass fiber fabric/epoxy resin. Two techniques of control were used to analyze the principal structural defects (local or global disorientation). The first technique provides a superficial observation (macroscopic analysis) of the superior and lower surfaces of each layer, while the second one ensures internal observation (microscopic analysis) of the different layers after pyrolysis of the matrix (delamination of the laminate).
Описано експериментальні методи для ідентифікації структурних дефектів у 12-шаровому ламінаті на основі скловолокнистої тканини й епоксидної смоли. Для аналізу основних структурних дефектів (локальна або глобальна дезорієнтація) використовували два методи. Один метод забезпечує дослідження (макроаналіз) верхньої і нижньої поверхней кожного шару, інший - внутрішнє дослідження (мікроаналіз) кожного шару після піролізу матриці (деламінації ламінату).
Описаны экспериментальные методы для идентификации структурных дефектов в 12-слойном ламинате на основе стекловолокнистой ткани и эпоксидной смолы. Для анализа основных структурных дефектов (локальная или глобальная дезориентация) использовались два метода. Один метод обеспечивает исследование (макроанализ) верхней и нижней поверхностей каждого слоя, другой - внутреннее исследование (микроанализ) каждого слоя после пиролиза матрицы (деламинации ламината).
en
Інститут проблем міцності ім. Г.С. Писаренко НАН України
Проблемы прочности
Научно-технический раздел
Identification method of structural defects in glass fiber fabric/epoxy resin laminate
Метод идентификации структурных дефектов в ламинате на основе стекловолокнистой ткани и эпоксидной смолы
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Identification method of structural defects in glass fiber fabric/epoxy resin laminate
spellingShingle Identification method of structural defects in glass fiber fabric/epoxy resin laminate
Naceri, A.
Научно-технический раздел
title_short Identification method of structural defects in glass fiber fabric/epoxy resin laminate
title_full Identification method of structural defects in glass fiber fabric/epoxy resin laminate
title_fullStr Identification method of structural defects in glass fiber fabric/epoxy resin laminate
title_full_unstemmed Identification method of structural defects in glass fiber fabric/epoxy resin laminate
title_sort identification method of structural defects in glass fiber fabric/epoxy resin laminate
author Naceri, A.
author_facet Naceri, A.
topic Научно-технический раздел
topic_facet Научно-технический раздел
publishDate 2009
language English
container_title Проблемы прочности
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
format Article
title_alt Метод идентификации структурных дефектов в ламинате на основе стекловолокнистой ткани и эпоксидной смолы
description We present the experimental methods proposed for the identification of structural defects of the laminate constituted of 12 layers of glass fiber fabric/epoxy resin. Two techniques of control were used to analyze the principal structural defects (local or global disorientation). The first technique provides a superficial observation (macroscopic analysis) of the superior and lower surfaces of each layer, while the second one ensures internal observation (microscopic analysis) of the different layers after pyrolysis of the matrix (delamination of the laminate). Описано експериментальні методи для ідентифікації структурних дефектів у 12-шаровому ламінаті на основі скловолокнистої тканини й епоксидної смоли. Для аналізу основних структурних дефектів (локальна або глобальна дезорієнтація) використовували два методи. Один метод забезпечує дослідження (макроаналіз) верхньої і нижньої поверхней кожного шару, інший - внутрішнє дослідження (мікроаналіз) кожного шару після піролізу матриці (деламінації ламінату). Описаны экспериментальные методы для идентификации структурных дефектов в 12-слойном ламинате на основе стекловолокнистой ткани и эпоксидной смолы. Для анализа основных структурных дефектов (локальная или глобальная дезориентация) использовались два метода. Один метод обеспечивает исследование (макроанализ) верхней и нижней поверхностей каждого слоя, другой - внутреннее исследование (микроанализ) каждого слоя после пиролиза матрицы (деламинации ламината).
issn 0556-171X
url https://nasplib.isofts.kiev.ua/handle/123456789/48511
citation_txt Identification method of structural defects in glass fiber fabric/epoxy resin laminate / A. Naceri // Проблемы прочности. — 2009. — № 6. — С. 119-124. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT naceria identificationmethodofstructuraldefectsinglassfiberfabricepoxyresinlaminate
AT naceria metodidentifikaciistrukturnyhdefektovvlaminatenaosnovesteklovoloknistoitkaniiépoksidnoismoly
first_indexed 2025-11-26T13:57:36Z
last_indexed 2025-11-26T13:57:36Z
_version_ 1850623855096233984
fulltext UDC 539.4 Identification Method of Structural Defects in Glass Fiber Fabric/ Epoxy Resin Laminate A. Naceri Mohammed Boudiaf University, M’sila, Algeria УДК 539.4 Метод идентификации структурных дефектов в ламинате на основе стекловолокнистой ткани и эпоксидной смолы А. Насери Университет им. Мохаммеда Будиафа, Мейла, Алжир Описаны экспериментальные методы для идентификации структурных дефектов в 12-слой­ ном ламинате на основе стекловолокнистой ткани и эпоксидной смолы. Для анализа основных структурных дефектов (локальная или глобальная дезориентация) использовались два мето­ да. Один метод обеспечивает исследование (макроанализ) верхней и нижней поверхностей каждого слоя, другой - внутреннее исследование (микроанализ) каждого слоя после пиролиза матрицы (деламинации ламината). К л ю ч е в ы е с л о в а : структурный дефект, пластина, композитный материал. Introduction . The greatest advantage o f com posite materials is strength and stiffness combined with lightness. Generally, a com posite material is com posed o f reinforcement (fibers, particles and/or fillers) embedded in a matrix (polymers, metals or ceramics). The matrix holds the reinforcement to form the desired shape w hile the reinforcement improves the overall m echanical properties o f the matrix [1]. According to the form o f reinforcement, com posite materials can be classified as follows: a) fibers as reinforcement (fibrous composites): random fiber- (short fiber-) reinforced com posites and continuous fiber- (long fiber-) reinforced com posites, b) particles as reinforcement (particulate com posites), and c) fillers as reinforcement (filler com posites). The microstructural analysis describes the composition and structure (including defects) o f the material that are significant for study o f its properties. The analysis o f manufacturing defects o f a com posite is necessary for the control o f the material quality. Am ong w idely used methods are: optical m icroscope (OM ), transmission electron m icroscope (TEM) or scanning electron m icroscope (SEM ). The non­ destructive testing methods used to verify voids, delaminations and density are acoustic em ission, radiography and ultrason. The investigations o f the m icro­ structure o f fiber-reinforced polym er com posite laminates can be visualized by means o f optical or acoustic techniques [2, 3]. The structural strength o f laminate is dependent on filament strength, matrix or resin strength, and fiber orientation. The m echanical strength o f a com posite is based on the interaction o f fiber and matrix in a process that depends upon ply or © A. NACERI, 2009 ISSN 0556-171X. Проблемы прочности, 2009, № 6 119 A. Naceri layer thicknesses and percent o f fiber volum e. In the manufacturing process, filaments should be tested for tensile strength, elastic m odulus, density, diameter, and stiffness. Matrix rheology must be characterized through chemical and physical testing. The preimpregnated material should be tested as to its satisfaction o f chem ical and thermal requirements. The laminate com posites should be tested for m echanical strength (com pression, flexion, and shear). The m echanical behavior o f this type o f w oven structure is very com plex because o f the particular problem involved in the geom etry o f the fiber network on w hich depend the structural properties. The significant question w hich arises for this type o f configuration is the determination, according to each application, o f the choice o f the fibrous and resinous system , the nature o f adhesion “renforcement/matrix,” the technique o f implementation, in order to obtain optimal characteristics. The system o f reinforcement more com m only used for the developm ent o f the fabrics is the textile glass fiber because o f is excellent ratio: mechanical performance/price. The two principal parameters w hich guarantee the quality o f the system o f w eaving are [4, 5]: surface density (size o f yarns and type o f armour) and counts (number o f chain yarns and fill yarns). The w aving o f the yarn in the w oven is a parameter w hich characterizes the undulation o f the yarn follow ing the selected direction (warp and w eft), it depends on the follow ing principal factors: number o f yarns and conditions o f weaving. The w aving o f the yarn in the w oven (K ) is the relation between the length o f a fabric and the length o f the yarn w hich is necessary to make weaving. Denser weaving, larger is the embuvage. It is defined by the follow ing expression [6]: Lf K (%) = — -100, L y where L f is length o f fabric and L y is length o f yarn. A fabric comprises yarns warp and yarns weft. It is characterized by four follow ing elements [7]: (i) the w eave (armour): m ode o f intersection o f yarns between them; (ii) the account: number o f warp yarns and w eft yarns; (iii) the nature o f yarns: carbon, kevlar, aramid, and glass; (iv) density o f yarns before/during weaving. This study presents the identification approach used for analysis o f manufacture defects o f laminate (glass fabric fiber/resin epoxy). The results obtained show the good detection o f defects o f com posite studied. The structural properties o f laminate depend strongly o f fabrication process and the material microstructure. E xperim ental D etails. M a te r ia l U sed. The material used was a laminate constituted o f 12 layers o f glass fiber fabric at taffeta w eave (the warp yarn and w eft w eaving alternatively) drowned in an epoxy resin. It is delivered in the form o f plane plates (five plates) o f average size: 350 (w eft direction) X 340 (warp direction) X 3.2 mm (thickness). The fiber volum e fraction o f the w oven fabric com posite (glass fiber fabric/epoxy resin) w as approximately 55% and the density 3 was about 1.94 g/cm . The volum e fraction o f fibers w as given according to the 120 ISSN 0556-171X. Проблемы прочности, 2009, N 6 Identification Method o f Structural Defects method o f calcination and found equal to V f = 30%. The five studied plates carried numbers 1, 2, 3, 4, and 5 and have 12 layers each. A n a ly s is o f S tru c tu ra l D efec ts . Initially, the visual observation o f external surfaces w as used to make a sketch o f the orientation o f the rovings o f the chain (warp) and w eft o f the two external layers o f the sheet (plate) on a tracing (Fig. 1). II PLATE ---------—— — - \\ ,\RP W1 F T Fig. 1. Orientation defects of layers of the plate (solid lines correspond warp and weft directions of the superior layer, dashed lines - warp and weft directions of the lower layer). The control method o f the orientation defects o f rovings used consisted in measuring the four representative angles o f the defects observed in ten points distributed in each plate, then the average o f the values obtained was assessed, whereas the follow ing angles were measured: a warp is angle measured between the warps o f the layers (superior/lower); a wef t is angle measured betw een the w efts o f the layers (superior/lower); a 1warp /weft is angle measured between the rovings o f the warp (chain) and the w eft for the superior layer (1); a 12warp/weft angle measured between the rovings o f the warp and the w eft for the lower layer (12). R esults and D iscussion. From the results o f the visual observations (Table 1) one can see that the variation o f the angles a warp, a wef t , a 1warpiwej t , and a 12warp/Weft o f the layers (superior/lower) is very low for the most plates (Nos. 1 - 4), except for plate 5 for w hich the variation is very significant. In particular, the angles a warp (angle measured between the warps o f the layers: superior/lower) and a wef t (angle measured between the wefts o f the layers: superior/lower) are definitely larger for plate 5 than for the other plates. The variation o f the w eaving in the w eft direction is, in general, much more significant than that observed in the warp direction. This variation is more reduced for plate 4. The second phase o f the study im plied the analysis and identification with precision and a certain degree o f confidence o f the local orientation defects in the structure o f the layers o f each plate. This requires the pyrolysis o f the matrix (epoxy resin). Two samples o f 20 mm were studied (Fig. 2) in each plate in the sides left (sm all white square) and right (sm all black square). ISSN 0556-171X. npo6n.eubi npounocmu, 2009, № 6 121 A. Naceri T a b l e 1 Results of the Representative Angles of the Defects Observed Plates ^ warp • deg ^ weft• deg ^Iwarp/weft• deg ^12warp/weft • deg 1 0.6 1.5 91.5 89.0 2 0 1.5 90.5 89.5 3 0 1.6 90.5 89.5 4 0 1.0 91.5 88.5 5 1.0 4.0 93.5 88.5 T a b l e 2 Results of the Principal Orientation Defects of the Plates Plates Samples (t1 warp deg a weft • deg ^warp / weft • deg 1 Left side 0 0 90 Right side 2.0 2.0 88 to 90 2 Left side 0 2.0 88 to 90 Right side 0 0 88.5 to 90 3 Left side 0 0 90 to 91 Right side 3.5 4.0 86 to 91 4 Left side 0 2.0 88 to 90 Right side 0 2.0 88 to 90 5 Left side 2.0 1.5 87 to 89 Right side 4.0 1.5 84 to 86 350 Fig. 2. Explanatory diagram of the two samples observed on each side (left and right) of the plate. The study o f visual observation o f the various layers after pyrolysis o f the matrix required the follow ing steps: (i) to carbonize the resin, in order to preserve only the separated layers o f the laminate (taffeta o f glass); 122 ISSN 0556-171X. npo6n.eubi npounocmu, 2009, N 6 Identification Method o f Structural Defects (ii) to photograph each layer on slide; (iii) to project these slides, in order to obtain a schematic o f the orientation o f rovings o f the warp and w eft o f each layer; (iv) to superimpose the schem atics obtained for the same sample o f the layers in order to analyze the local orientation defects possibly observed. For each layer one defines the follow ing angles: a'warp is maximum angle between the rovings o f the warp relative to a reference, a'wef t is maximum angle between the rovings o f the w eft relative to a reference, and a'warp /wef t is angle between the rovings o f the warp and the w eft o f the layer. Table 2 shows for each plate the maxim um values o f the three defined angles, those clearly confirm notable confusions o f plate 5 and a good quality o f plates 1 and 2. C onclusions. The above visual observation method (m acroscopic and m icro­ scopic analysis) has permitted us to identify and classify the studied plates, starting from the results obtained, in three categories w hich are: - plates 1 and 2 are a priori acceptable to realize tests (light variation o f the undulation defects w ith a dispersion about 2°); - plates 3 and 4 are o f average quality but can be used; - plate 5 is o f poor quality. Р е з ю м е Описано експериментальні методи для ідентифікації структурних дефектів у 12-ш аровому ламінаті на основі скловолокнистої тканини й епоксидної смоли. Для аналізу основних структурних дефектів (локальна або глобальна дезорієнтація) використовували два методи. Один метод забезпечує дослід­ ження (макроаналіз) верхньої і нижньої поверхней кожного шару, інший - внутрішнє дослідження (мікроаналіз) кожного шару після піролізу матриці (деламінації ламінату). 1. H. A. K. Hamed and K. S. H. Sadek, “M echanical properties o f w oven fabrics,” Inst. M ech . E ng. (2004). 2. W. Bai and B. S. W ong, “Evaluation o f defects in com posite plates under convective environments using lock-in thermography,” M easu r. Sci. Technol., 12, 142-150 (2001). 3. M. A bu-K housa, W . Saleh, and N . Qaddoum i, “D efect im aging and characterization in com posite structures using near-field m icrowave non­ destructive testing techniques,” C om pos. S tru ct., 62, N o. 3-4, 2 5 5 -2 5 9 (2003). 4. G. Giorleo and C. M eola, “Location and geom etry o f defects in composite laminates from infrared im ages,” J. M ater. Eng. P erform ., 7, N o. 3, 3 67 -374 (1998). 5. R. Leurt, T issus p o u r d e N ou veau x C h am ps d 'A p p lic a tio n , Revue Technique (1997). ISSN 0556-171X. Проблеми прочности, 2009, № 6 123 A. Naceri 6. P. Boisse, B. Zouari, F. Dumont, et A. Gasser, “Assemblage de fibres par tissage: analyse et simulation du comportement mécanique,” Mécanique & Industries, 6, 65-74 (2005). 7. K. Buet-Gautier and P. Boisse, “Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements,” Exp. Mech., 41, No. 3, 260-269 (2001). Received 09. 02. 2009 124 ISSN 0556-171X. npoôëeMbi npounocmu, 2009, N 6