Про групи зберігаючих міру гомеоморфізмів просторів Кантора
Розглянуто групи MB зберігаючих міру Бернуллі гомеоморфізмів просторів шляхів простих стаціонарних діаграм Браттелі B. Знайдено підклас діаграм, для яких група MB є замиканням своєї підгрупи S(P(B)). Також знайдено підклас діаграм рангу 2, для яких група MB строго містить замикання своєї підгрупи S(...
Збережено в:
| Опубліковано в: : | Доповіді НАН України |
|---|---|
| Дата: | 2012 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2012
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/49481 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Про групи зберігаючих міру гомеоморфізмів просторів Кантора / Я.В. Лавренюк // Доп. НАН України. — 2012. — № 4. — С. 20-24. — Бібліогр.: 5 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Розглянуто групи MB зберігаючих міру Бернуллі гомеоморфізмів просторів шляхів простих стаціонарних діаграм Браттелі B. Знайдено підклас діаграм, для яких група MB є замиканням своєї підгрупи S(P(B)). Також знайдено підклас діаграм рангу 2, для яких група MB строго містить замикання своєї підгрупи S(P(B)).
Рассмотрены группы MB сохраняющих меру Бернулли гомеоморфизмов пространств путей простых стационарных диаграмм Браттели B. Найден подкласс диаграмм, для которых группа MB является замыканием своей подгруппы S(P(B)). Также найден подкласс диаграмм ранга 2, для которых группа MB строго содержит замыкание своей подгруппы S(P(B)).
The groups MB of measure-preserving self-homeomorphisms of path spaces of simple stationary Bratteli diagrams B are studied. A subclass of diagrams, for which MB is a closure of the subgroup S(P(B)), is found. A subclass of diagrams of rank 2, for which the group MB strictly contains the closure of its subgroup S(P(B)), is also distinguished.
|
|---|---|
| ISSN: | 1025-6415 |