Проекционные методы решения нелинейных вариационных неравенств

Розглядаються скінченновимірні варіаційні нерівності з сильно монотонним оператором та числові методи їх розв’язання. Вивчаються проекційні методи першого порядку з лінеаризацією обмежень, які базуються на апараті квадратичного програмування. Доведена нелокальна збіжність до розв’язку і лінійна швид...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Системні дослідження та інформаційні технології
Datum:2002
Hauptverfasser: Панин, В.М., Лаврина, Т.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2002
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/50227
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Проекционные методы решения нелинейных вариационных неравенств / В.М. Панин, Т.В. Лаврина // Систем. дослідж. та інформ. технології. — 2002. — № 2. — С. 103-117. — Бібліогр.: 10 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглядаються скінченновимірні варіаційні нерівності з сильно монотонним оператором та числові методи їх розв’язання. Вивчаються проекційні методи першого порядку з лінеаризацією обмежень, які базуються на апараті квадратичного програмування. Доведена нелокальна збіжність до розв’язку і лінійна швидкість збіжності в його околі. Рассматриваются конечномерные вариационные неравенства с сильно монотонным оператором и численные методы их решения. Изучаются проекционные методы первого порядка с линеаризацией ограничений, основанные на аппарате квадратичного программирования. Установлена нелокальная сходимость к решению и линейная скорость сходимости в его окрестности. Finite-dimesional variational inequalities with a strongly monotone operator and numerical methods for their solution are considered. First order projectional methods with linearisation of constraints based on quadratical programming are studied. Nonlocal convergence to solution and geometrical convergence in its neighborhood are proved.
ISSN:1681–6048