Динамические системы и моделирование турбулентности

Окреслено підхід до аналізу турбулентних коливань, що описуються нелінійними крайовими задачами для рівнянь з частинними похідними. Цей підхід базується на переході до динамічної системи зсувів вздовж розв'язків і використовує поняття ідеальної турбулентності - математичного явища, за якого атр...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Романенко, Е.Ю., Шарковский, А.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2007
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/5527
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Динамические системы и моделирование турбулентности / Е.Ю. Романенко, А.Н. Шарковский // Укр. мат. журн. — 2007. — Т. 59, № 2. — С. 217-230. — Бібліогр.: 49 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-5527
record_format dspace
spelling Романенко, Е.Ю.
Шарковский, А.Н.
2010-01-25T17:26:02Z
2010-01-25T17:26:02Z
2007
Динамические системы и моделирование турбулентности / Е.Ю. Романенко, А.Н. Шарковский // Укр. мат. журн. — 2007. — Т. 59, № 2. — С. 217-230. — Бібліогр.: 49 назв. — рос.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/5527
517.9
Окреслено підхід до аналізу турбулентних коливань, що описуються нелінійними крайовими задачами для рівнянь з частинними похідними. Цей підхід базується на переході до динамічної системи зсувів вздовж розв'язків і використовує поняття ідеальної турбулентності - математичного явища, за якого атрактор нескінченновимірної динамічної системи міститься не у фазовому просторі системи, а у ширшому функціональному просторі і серед "точок" атрактора є фрактальні або й випадкові функції. Описано сценарій турбулентності в системах з регулярною динамікою на атракторі, коли просторово-часова хаотизація системи, зокрема перемішування, автостохастичність, каскадний процес утворення структур, зумовлені дуже складною внутрішньою організацією "точок" атрактора - елементів ширшого функціонального простору. Такий сценарій реалізується у певних ідеалізованих моделях розподілених систем електродинаміки, акустики, радіофізики.
We propose an approach to the analysis of turbulent oscillations described by nonlinear boundary-value problems for partial differential equations. This approach is based on the transition to a dynamical system of shifts along solutions and uses the notion of ideal turbulence (a mathematical phenomenon such that the attractor of an infinite-dimensional dynamical system lies not in the phase space of the system but in a wider functional space and, among attractor “points”, there are fractal or random functions). A scenario for ideal turbulence in systems with regular dynamics on an attractor is described; in this case, the space-time chaotization of a system, in particular, the intermixing, the self-stochastisity, and the cascade process of creation of structures, is due to the very complicated organization of attractor “points” (elements of a certain wider functional space). Such a scenario is available in some idealized models of parameter-distributed systems in electrodynamics, acoustics, radiophysics, etc.
ru
Інститут математики НАН України
Статті
Динамические системы и моделирование турбулентности
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Динамические системы и моделирование турбулентности
spellingShingle Динамические системы и моделирование турбулентности
Романенко, Е.Ю.
Шарковский, А.Н.
Статті
title_short Динамические системы и моделирование турбулентности
title_full Динамические системы и моделирование турбулентности
title_fullStr Динамические системы и моделирование турбулентности
title_full_unstemmed Динамические системы и моделирование турбулентности
title_sort динамические системы и моделирование турбулентности
author Романенко, Е.Ю.
Шарковский, А.Н.
author_facet Романенко, Е.Ю.
Шарковский, А.Н.
topic Статті
topic_facet Статті
publishDate 2007
language Russian
publisher Інститут математики НАН України
format Article
description Окреслено підхід до аналізу турбулентних коливань, що описуються нелінійними крайовими задачами для рівнянь з частинними похідними. Цей підхід базується на переході до динамічної системи зсувів вздовж розв'язків і використовує поняття ідеальної турбулентності - математичного явища, за якого атрактор нескінченновимірної динамічної системи міститься не у фазовому просторі системи, а у ширшому функціональному просторі і серед "точок" атрактора є фрактальні або й випадкові функції. Описано сценарій турбулентності в системах з регулярною динамікою на атракторі, коли просторово-часова хаотизація системи, зокрема перемішування, автостохастичність, каскадний процес утворення структур, зумовлені дуже складною внутрішньою організацією "точок" атрактора - елементів ширшого функціонального простору. Такий сценарій реалізується у певних ідеалізованих моделях розподілених систем електродинаміки, акустики, радіофізики. We propose an approach to the analysis of turbulent oscillations described by nonlinear boundary-value problems for partial differential equations. This approach is based on the transition to a dynamical system of shifts along solutions and uses the notion of ideal turbulence (a mathematical phenomenon such that the attractor of an infinite-dimensional dynamical system lies not in the phase space of the system but in a wider functional space and, among attractor “points”, there are fractal or random functions). A scenario for ideal turbulence in systems with regular dynamics on an attractor is described; in this case, the space-time chaotization of a system, in particular, the intermixing, the self-stochastisity, and the cascade process of creation of structures, is due to the very complicated organization of attractor “points” (elements of a certain wider functional space). Such a scenario is available in some idealized models of parameter-distributed systems in electrodynamics, acoustics, radiophysics, etc.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/5527
citation_txt Динамические системы и моделирование турбулентности / Е.Ю. Романенко, А.Н. Шарковский // Укр. мат. журн. — 2007. — Т. 59, № 2. — С. 217-230. — Бібліогр.: 49 назв. — рос.
work_keys_str_mv AT romanenkoeû dinamičeskiesistemyimodelirovanieturbulentnosti
AT šarkovskiian dinamičeskiesistemyimodelirovanieturbulentnosti
first_indexed 2025-12-07T19:00:29Z
last_indexed 2025-12-07T19:00:29Z
_version_ 1850877180441001984