Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт

Методом квазiпружного розсiяння повiльних нейтронiв проведено дослiдження динамiки молекул розчинiв вода–пропиловий спирт рiзної концентрацiї при температурi 281 К. Експериментально виявлено особливостi концентрацiйної залежностi ефективного коефiцiєнта самодифузiї та його одночастинкового внеску, а...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Булавін, Л.А., Атамась, Н.О., Василькевич, О.А., Вербінська, Г.М., Слісенко, В.І., Ковальов, О.В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Відділення фізики і астрономії НАН України 2010
Schriftenreihe:Український фізичний журнал
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/56218
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт / Л.А. Булавін, Н.О. Атамась, О.А. Василькевич, Г.М. Вербінська, В.І. Слісенко, О.В. Ковальов // Український фізичний журнал. — 2010. — Т. 55, № 6. — С. 694-698. — Бібліогр.: 7 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-56218
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-562182025-02-09T20:45:37Z Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт Concentration Specific Features of the Dynamics of Molecules in Solutions Water−Propyl Alcohol Концентрационные особенности динамики молекул в растворах вода—пропиловый спирт Булавін, Л.А. Атамась, Н.О. Василькевич, О.А. Вербінська, Г.М. Слісенко, В.І. Ковальов, О.В. М'яка речовина Методом квазiпружного розсiяння повiльних нейтронiв проведено дослiдження динамiки молекул розчинiв вода–пропиловий спирт рiзної концентрацiї при температурi 281 К. Експериментально виявлено особливостi концентрацiйної залежностi ефективного коефiцiєнта самодифузiї та його одночастинкового внеску, а саме: наявнiсть двох мiнiмумiв в областях концентрацiй (0,04–0,05) м.д. i (0,18–0,22) м.д. спирту та монотонне зростання коефiцiєнта дифузiї при концентрацiях, бiльших за 0,4 м.д. спирту. Результати нейтронного експерименту зiставлено з розрахунками структури указаних розчинiв, проведених методом Монте-Карло. Показано, що мiнiмуми у концентрацiйнiй залежностi коефiцiєнта самодифузiї вiдповiдають певним локальним структурам дослiдженого розчину. By the method of quasielastic scattering of slow neutrons, we study the dynamics of molecules in water–propyl alcohol solutions of various concentrations at a temperature of 281 K. In experiments, we registered specific features of the concentration dependence of the efficient self-diffusion coefficient and its one-particle contribution, namely: the presence of two minima in the regions of (0.04–0.05) mass fractions (m.f.) and (0.18–0.22) m.f. of alcohol and a monotonous increase of the diffusion coefficient at concentrations greater than 0.4 m.f. of alcohol. The results of neutronscattering experiments are compared with those of calculations of a structure of the mentioned solutions executed by the MonteCarlo method. It is shown that the minima of the concentration dependence of the self-diffusion coefficient correspond to certain local structures of the solution under study. Методом квазиупругого рассеяния медленных нейтронов проведено исследование динамики молекул в растворах вода—пропиловый спирт разной концентрации при температуре 281 К. Экспериментально установлены особенности концентрационной зависимости эффективного коэффициента самодиффузии и его одночастичного вклада, а именно: существование двух минимумов в областях концентрации (0,04–0,05) м.д. и (0,18–0,22) м.д. спирта, а также монотонное увеличение коэффициента диффузии при концентрациях спирта, больших чем 0,4 м.д. Результаты нейтронного эксперимента сравнивали с расчетами структуры указанных растворов, проведенных методом Монте-Карло. Показано, что минимумы в концентрационной зависимости коэффициента самодиффузии отвечают определенным локальным структурам исследуемого раствора. 2010 Article Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт / Л.А. Булавін, Н.О. Атамась, О.А. Василькевич, Г.М. Вербінська, В.І. Слісенко, О.В. Ковальов // Український фізичний журнал. — 2010. — Т. 55, № 6. — С. 694-698. — Бібліогр.: 7 назв. — укр. 2071-0194 PACS 61 https://nasplib.isofts.kiev.ua/handle/123456789/56218 538 uk Український фізичний журнал application/pdf application/pdf Відділення фізики і астрономії НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic М'яка речовина
М'яка речовина
spellingShingle М'яка речовина
М'яка речовина
Булавін, Л.А.
Атамась, Н.О.
Василькевич, О.А.
Вербінська, Г.М.
Слісенко, В.І.
Ковальов, О.В.
Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт
Український фізичний журнал
description Методом квазiпружного розсiяння повiльних нейтронiв проведено дослiдження динамiки молекул розчинiв вода–пропиловий спирт рiзної концентрацiї при температурi 281 К. Експериментально виявлено особливостi концентрацiйної залежностi ефективного коефiцiєнта самодифузiї та його одночастинкового внеску, а саме: наявнiсть двох мiнiмумiв в областях концентрацiй (0,04–0,05) м.д. i (0,18–0,22) м.д. спирту та монотонне зростання коефiцiєнта дифузiї при концентрацiях, бiльших за 0,4 м.д. спирту. Результати нейтронного експерименту зiставлено з розрахунками структури указаних розчинiв, проведених методом Монте-Карло. Показано, що мiнiмуми у концентрацiйнiй залежностi коефiцiєнта самодифузiї вiдповiдають певним локальним структурам дослiдженого розчину.
format Article
author Булавін, Л.А.
Атамась, Н.О.
Василькевич, О.А.
Вербінська, Г.М.
Слісенко, В.І.
Ковальов, О.В.
author_facet Булавін, Л.А.
Атамась, Н.О.
Василькевич, О.А.
Вербінська, Г.М.
Слісенко, В.І.
Ковальов, О.В.
author_sort Булавін, Л.А.
title Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт
title_short Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт
title_full Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт
title_fullStr Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт
title_full_unstemmed Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт
title_sort концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт
publisher Відділення фізики і астрономії НАН України
publishDate 2010
topic_facet М'яка речовина
url https://nasplib.isofts.kiev.ua/handle/123456789/56218
citation_txt Концентраційні особливості динаміки молекул розчинів вода−пропиловий спирт / Л.А. Булавін, Н.О. Атамась, О.А. Василькевич, Г.М. Вербінська, В.І. Слісенко, О.В. Ковальов // Український фізичний журнал. — 2010. — Т. 55, № 6. — С. 694-698. — Бібліогр.: 7 назв. — укр.
series Український фізичний журнал
work_keys_str_mv AT bulavínla koncentracíiníosoblivostídinamíkimolekulrozčinívvodapropiloviispirt
AT atamasʹno koncentracíiníosoblivostídinamíkimolekulrozčinívvodapropiloviispirt
AT vasilʹkevičoa koncentracíiníosoblivostídinamíkimolekulrozčinívvodapropiloviispirt
AT verbínsʹkagm koncentracíiníosoblivostídinamíkimolekulrozčinívvodapropiloviispirt
AT slísenkoví koncentracíiníosoblivostídinamíkimolekulrozčinívvodapropiloviispirt
AT kovalʹovov koncentracíiníosoblivostídinamíkimolekulrozčinívvodapropiloviispirt
AT bulavínla concentrationspecificfeaturesofthedynamicsofmoleculesinsolutionswaterpropylalcohol
AT atamasʹno concentrationspecificfeaturesofthedynamicsofmoleculesinsolutionswaterpropylalcohol
AT vasilʹkevičoa concentrationspecificfeaturesofthedynamicsofmoleculesinsolutionswaterpropylalcohol
AT verbínsʹkagm concentrationspecificfeaturesofthedynamicsofmoleculesinsolutionswaterpropylalcohol
AT slísenkoví concentrationspecificfeaturesofthedynamicsofmoleculesinsolutionswaterpropylalcohol
AT kovalʹovov concentrationspecificfeaturesofthedynamicsofmoleculesinsolutionswaterpropylalcohol
AT bulavínla koncentracionnyeosobennostidinamikimolekulvrastvorahvodapropilovyispirt
AT atamasʹno koncentracionnyeosobennostidinamikimolekulvrastvorahvodapropilovyispirt
AT vasilʹkevičoa koncentracionnyeosobennostidinamikimolekulvrastvorahvodapropilovyispirt
AT verbínsʹkagm koncentracionnyeosobennostidinamikimolekulvrastvorahvodapropilovyispirt
AT slísenkoví koncentracionnyeosobennostidinamikimolekulvrastvorahvodapropilovyispirt
AT kovalʹovov koncentracionnyeosobennostidinamikimolekulvrastvorahvodapropilovyispirt
first_indexed 2025-11-30T15:51:32Z
last_indexed 2025-11-30T15:51:32Z
_version_ 1850231115789369344
fulltext L.A. BULAVIN, N.A. ATAMAS’, A.A. VASILKEVICH et al. CONCENTRATION SPECIFIC FEATURES OF THE DYNAMICS OF MOLECULES IN SOLUTIONS WATER–PROPYL ALCOHOL L.A. BULAVIN,1 N.A. ATAMAS’,1 A.A. VASILKEVICH,2 G.N. VERBINSKAYA,2 V.I. SLISENKO,2 A.V. KOVAL’OV2 1Taras Shevchenko National University of Kyiv, Faculty of Physics (6, Academician Glushkov Ave., Kyiv 03022, Ukraine) 2Institute of Nuclear Research, Nat. Acad. of Sci. of Ukraine (47, Nauky Ave., Kyiv 03680, Ukraine) PACS 61 c©2010 By the method of quasielastic scattering of slow neutrons, we study the dynamics of molecules in water–propyl alcohol solutions of var- ious concentrations at a temperature of 281 K. In experiments, we registered specific features of the concentration dependence of the efficient self-diffusion coefficient and its one-particle con- tribution, namely: the presence of two minima in the regions of (0.04÷0.05) mass fractions (m.f.) and (0.18÷0.22) m.f. of alcohol and a monotonous increase of the diffusion coefficient at concen- trations greater than 0.4 m.f. of alcohol. The results of neutron- scattering experiments are compared with those of calculations of a structure of the mentioned solutions executed by the Monte- Carlo method. It is shown that the minima of the concentration dependence of the self-diffusion coefficient correspond to certain local structures of the solution under study. Water is a specific fluid with regard for its chemico- physical properties. As known, these properties influ- ence the behavior of water at its interaction with other substances. The water structure depends on the pres- ence of hydrogen bonds which are formed due to a spe- cific distribution of the charge density in a molecule. At the present time, there is no commonly accepted idea of the water structure, which does not allow one to describe all anomalous phenomena observed at the formation of water solutions (in particular, alcohol-water solutions) in a wide interval of thermodynamical parameters. Up to now, a great number of experiments on the study of properties of alcohol-water solutions as functions of their concentration and the temperature were carried out. Within the method of light scattering in water– alcohol solutions, the maximum of the integral scatter- ing intensity was observed [1] at the content of alcohol x ≈ (0.15÷ 0.5) m.f. This maximum is named a normal peak. It is well described by the theory of light scat- tering by fluctuations of the concentration. In addition, one more peak, besides the normal one, was discovered at an alcohol concentration of (0.03÷0.05) m.f. in water– alcohol solutions [1]. To explain the anomalous behavior of water–alcohol solutions, we may use the model of mi- croinhomogeneous cluster structure proposed in [2] for a glycerin – water system. The assumptions about the composition and the sizes of clusters which were made by the authors with the use of the stability condition for clusters are confirmed by estimates following from the thermodynamical calculations. As for water–alcohol so- lutions, their cluster structure at certain concentrations is corroborated by Monte-Carlo calculations performed for a water—ethyl alcohol solution [3, 4]. In this case, the concentration regions of solutions characterized by certain structural peculiarities are determined. It is clear that the above-mentioned structural pecu- liarities of water–alcohol solutions must affect the dy- namics of their molecules. Therefore, within the method of quasielastic scattering of slow neutrons (QSSN) [5], we have studied the self-diffusion of molecules in water– propyl alcohol solutions. As known, the QSSN method is especially sensitive to the dynamics of molecules in hydrogen-containing fluids and allows one to observe the diffusion motion of molecules during the time in- terval (10−10 ÷ 10−12 s) and, thus, to obtain the infor- mation about the collective and one-particle motions of molecules. The measurement of the quasielastic scattering spec- tra of slow neutrons was carried out on a many-detector time-of-flight spectrometer positioned at a VVR-M re- actor at the Institute of Nuclear Research of the NAS of Ukraine in the scattering angle interval 25.1◦ ÷ 101.3◦. In experiments, we used monochromatic neutrons with an energy of 13.2 meV. We have studied the scattering of neutrons in water–propyl alcohol solutions in a wide 694 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 6 CONCENTRATION SPECIFIC FEATURES OF THE DYNAMICS range of concentrations at a temperature of 281 K. In this case, we used thin specimens, in which the neutron flight length does not exceed 1 mm, which allowed us to neglect the corrections for the multiple scattering of neutrons. The obtained spectra of quasielastic scatter- ing of neutrons with regard for the resolving power of a spectrometer were approximated by the Lorentz function S(Q, ε) = exp(−2W ) 2~ ΔE(Q) π ( ε2 + ΔE (Q)2 ) (1) describing the quasielastic scattering of neutrons, exp{−2W} is the Debye–Waller factor, ε = ~ω is a change of the neutron energy at the scattering, Q = k − k0 is a change of the wave vector of a neutron in the process of scattering, and ΔE (Q) is a half-width of the quasielastic peak. By using the method of least squares, we approximated the quasielastic peak of scat- tered neutrons by function (1). As a result, we obtain the functional dependence ΔE ( Q2 ) containing the full information about the diffusion processes in the fluid sys- tem under study. In more details, the procedure of cal- culations is given in [5]. In the analysis of the dependences ΔE ( Q2 ) obtained on the basis of neutron spectra, we applied the Bulavin– Oskots’kyi–Ivanov model [6] which considers most com- pletely the diffusion motions of molecules such as the oscillations of molecules around a center of temporary equilibrium, the hops of molecules from one center of equilibrium to another one (the so-called Frenkel mech- anism of diffusion), and the diffusion of centers of equi- librium (the so-called Lagrange mechanism of diffusion). In the frame of this model, the widening of the peak is described by the formula ΔE = 2 ~DLQ 2 + 2~ τ0 [ 1− exp {−2W} 1 +Q2(D −DL)τ0 ] , (2) where D is the total self-diffusion coefficient, DL is the coefficient of continuous (Lagrange) diffusion of the cen- ters of oscillations of molecules, and τ0 is the duration of the settled life of a molecule in the position of equilib- rium between two hops. In order to determine the pa- rameters D,DL, and τ0, the experimental dependences ΔE = ΔE(Q2) at a constant concentration of the solu- tion were approximated by the theoretical curve (2) in the whole interval of variations of the square of the wave vector transferred. The use of the conception of a hierarchy of the time scales of molecular motions [7] allows us to separate the self-diffusion coefficient D into the collective (Lagrange) Fig. 1. Concentration dependence of the self-diffusion coefficient D, its collective DL and one-particle DF contributions. X is the concentration of propyl alcohol in a water solution DL and one-particle (Frenkel) DF parts: D = DL +DF . (3) The experimental concentration dependences of the self- diffusion coefficient D and its components DL and DF are given in Fig. 1. It is seen from Fig. 1 that the concentration de- pendences of the effective self-diffusion coefficient D of molecules of a propanol–water solution and its one- particle component DF have two minima, respectively, at the concentrations of alcohol x = (0.04 ÷ 0.05) m.f. and x = (0.18 ÷ 0.22) m.f., which testifies to a signifi- cant deceleration of diffusion motions and a decrease in the one-particle contribution at the indicated concentra- tions. The minimum at a higher concentration of alcohol has a greater width and corresponds to the scattering of neutrons by fluctuations of the concentration. It is worth noting that the scattering cross-section of slow neutrons by hydrogen atoms is more approximately by a factor of 20 than those by the other atoms. This implies that neutrons “feel” mainly the motions of hy- drogen atoms in molecules of alcohol and water con- taining hydrogen and, therefore, give information about the fluid dynamics only to that extent, at which this dynamics is reflected in motions of these atoms. At a concentration of 0.04 m.f. of propyl alcohol in wa- ter, the ratio of protons in alcohol molecules and wa- ter molecules amounts to 1:6. Hence, neutrons reflect mainly the dynamics of water molecules in a solution. But, at a concentration of 0.2 m.f. of alcohol, the num- bers of protons in molecules of alcohol and water are ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 6 695 L.A. BULAVIN, N.A. ATAMAS’, A.A. VASILKEVICH et al. Fig. 2. Dependence of the duration of the settled life of molecules in the position of equilibrium on the concentration of alcohol in water–propanol solutions the same. In this case, the contributions to the widen- ing of the quasielastic peak from motions of molecules of alcohol and water are almost identical. In the in- terval of concentrations x = (0.18 ÷ 0.22) m.f. of al- cohol, the collective component DL of the self-diffusion coefficient attains a minimum value and then monoton- ically increases. The monotonous increase of the total self-diffusion coefficient and its components is charac- teristic at concentrations more than 0.4 m.f. of alco- hol. Based on the experimental data on the quasielastic scattering of slow neutrons and relation (2), we made attempt to evaluate the mean duration of the stay of molecules in the position of equilibrium. As seen from Fig. 2, the concentration dependence of the duration of the settled life of molecules τ0 in the position of equilib- rium has a maximum in the alcohol concentration region x = (0.04 ÷ 0.05) m.f. and a wide maximum in the re- gion of concentrations x = (0.18÷ 0.22) m.f. of alcohol. Such significant increase in the duration of the settled life indicates a local structural reconstruction of solu- tions at the indicated concentrations, and the widths of maxima demonstrates the fundamental difference of mechanisms of these processes for two given concentra- tions. A significant deceleration of diffusion motions and an increase in the duration of the settled life in the indicated region of concentrations (Figs. 1 and 2) are related, in our opinion, to the formation of stable water–alcohol complexes. Such a behavior of the self-diffusion coefficient and the duration of the settled life at a change of the solu- tion concentration become understandable if we com- pare the results of neutron experiments to those ob- tained by us within the Monte-Carlo method for the structure of water — propyl alcohol solutions. As a re- sult of the computer simulation, we obtained the depen- dences of the mean energies of components of the in- termolecular interaction (the interaction between water molecules, the interaction between molecules of alcohol, and the interaction between water molecules and alco- hol), the radial distribution functions, and the numbers of the nearest neighbors. On the basis of the data ob- tained, we have determined the regions, where the local structure of a solution varies, and propose the model ideas for the description of a structure of the water– propyl alcohol system under study at various concentra- tions. According to the calculations, we can separate several regions of concentrations of water–alcohol solutions with a local structure characteristic of each region. 1. Concentration of Propyl Alcohol in a Water Solution with x < 0.04 m.f. The introduction of propanol molecules into water in this region of concentrations does not lead to breaks in the network of hydrogen bonds which is formed by water molecules. A propanol molecule introduced into a solu- tion is surrounded by (7 ÷ 8) water molecules, and the interaction between molecules of propanol at large dis- tances does not cause the formation of complexes with molecules of alcohol. In this region of concentrations, the water clusters are composed of 6 molecules of water. In this case, the self-diffusion coefficient of water molecules in the alcohol solution is close to the self-diffusion coef- ficient of pure water. 2. Concentration of Propyl Alcohol in a Water Solution with x ∼ (0.04 ÷ 0.1) m.f. In the limits of this region of concentrations, there oc- curs a reconstruction of water clusters and a decrease in the number of molecules in them to five. Complexes which are composed of at least one water molecule and one propanol molecule are formed. At the same time, there exist the systems including one propanol molecule surrounded by (7÷8) water molecules. The formation of complexes of water molecules and alcohol leads to a significant deceleration of the diffu- sion motion and an increase in the duration of a set- tled life of water molecules in a position of equilib- rium. This explains the presence of the minimum in 696 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 6 CONCENTRATION SPECIFIC FEATURES OF THE DYNAMICS the concentration dependence of the self-diffusion coef- ficient D and its one-particle contribution DF , as well as the presence of the maximum of τ0 at concentrations x = (0.04÷0.05) m.f., which was observed in the neutron experiments. 3. Concentration of Propyl Alcohol in a Water Solution with x ∼ (0.1 ÷ 0.25) m.f. In the region of concentrations x ∼ (0.1 ÷ 0.18) m.f., there occurs the further reconstruction of water clus- ters and a decrease in the number of their molecules to four. As a result, the systems composed of two water molecules and, as a minimum, one propanol molecule are formed. In addition, we assume the presence of sys- tems including a single water molecule and one propanol molecule, as well as systems of (7÷8) water molecules surrounding a single propanol molecule. As a concentration x ∼ (0.18÷ 0.22) m.f. is attained, we can assume the formation of clusters of six propanol molecules surrounded by (18-20) water molecules due to the hydrophobic interaction of propanol molecules be- tween themselves and the interaction between molecules of water and propanol. In the limits of concentrations x ∼ (0.18 ÷ 0.25) m.f., the systems composed of water molecules surrounding one propanol molecule continue to exist. These systems are analogous to those which are registered in infinitely diluted solutions. In the region of concentrations x ∼ (0.18÷ 0.22) m.f. of alcohol, the data of neutron experiments on the con- centration dependence of the coefficient self-diffusion D and its one-particle component DF indicate the pres- ence of the second wider minimum and maximum of the concentration dependence τ0. 4. Concentration of Propyl Alcohol in a Water Solution with x ∼ (0.25 ÷ 0.4) m.f. In the limits of this region of concentrations, there oc- curs the formation of a structure of clusters of propanol molecules. Near concentrations greater than x ∼ 0.3 m.f., these clusters include four propanol molecules sur- rounded by eight water molecules. In this case, two wa- ter molecules are present in the vicinity of an alkyl chain of propanol molecules, and a single water molecule is near the hydroxyl group of a propanol molecule. We note that, at the concentration of alcohol x ≥ 0.3 m.f., the structure of clusters of propanol molecules reminds that of micellae. The interior and exterior of clusters contain, respectively, hydroxyl groups and alkyl groups of propanol molecules. 5. Concentration of Propyl Alcohol in a Water Solution with x > 0.4 m.f. In this region of the concentration, we observe a monotonous increase in the self-diffusion coefficient and its components, as well as a monotonous decrease in the duration of the settled life, as the concentration of alcohol in water increases. The increase in the col- lective contribution to the self-diffusion coefficient tes- tifies that the solutions contain the centers of oscil- lations surrounded by hydration shells. As the cen- ters of oscillations, we may consider the micella-like complexes formed by molecules of alcohol surrounded by the first and second hydration shells. At the same time, the increase in the one-particle compo- nent of the self-diffusion coefficient with the concentra- tion of alcohol in a solution indicates the presence of free water molecules in solutions or temporarily liber- ated water molecules which appear during their trans- fer from one hydration shell to another one. Free molecules of alcohol not bound in complexes can also exist. The increase in the self-diffusion coefficient and the de- crease in the duration of the settled life of molecules in a position of equilibrium at a further increase in the con- centration of alcohol are a consequence of the decrease in the number of water molecules in hydration shells, which causes an increase in the mobility of propanol molecules. Thus, within the method of the quasielastic scatter- ing slow of slow neutrons and the method of Monte- Carlo, we have studied the influence of the concen- tration of alcohol on a local and energy properties of the water–propanol system. The analysis of the ob- tained radial distribution functions in these liquid sys- tems allowed us to separate several regions of concentra- tions of the water–alcohol solution with a local structure of a solution characteristic of each region. The exis- tence of the separated regions of concentrations in the water—propyl alcohol system is confirmed experimen- tally by the method of quasielastic scattering of slow neutrons. We have revealed the minima on the con- centration dependences of the self-diffusion coefficient D and its one-particle componentDF at the concentrations x = (0.040 ÷ 0.05) m.f. and x = (0.18 ÷ 0.22) m.f. of alcohol which correspond to certain local structures of a solution. 1. M.F. Vuks, Scattering of Light in Gases, Fluids, and So- lutions (Leningrad State Univ., Leningrad, 1977) (in Rus- sian). ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 6 697 L.A. BULAVIN, N.A. ATAMAS’, A.A. VASILKEVICH et al. 2. V.E. Chechko, T.V. Lokotosh, M.P. Malomuzh et al., Zh. Fiz. Dosl. 7, 175 (2003). 3. N.A. Atamas, A.A. Atamas, and L.A. Bulavin, Russian J. Phys. Chem. 78, 1080 (2004). 4. N.A. Atamas and A.A. Atamas, Proceed. of World Academy of Sci., Eng. and Techn. 55, 1 (2009). 5. L.A. Bulavin, G.M. Verbins’ka, and I.M. Vyshnevs’kyi, Quasielastic Scattering of Slow Neutrons in Fluids (ASMI, Poltava, 2004) (in Ukrainian). 6. L.A. Bulavin, G.N. Verbinskaya, and V.T. Krotenko, Fiz. Zhidk. Sost. 19, 40 (1991). 7. L.A. Bulavin, A.A. Vasilkevich, A.K. Dorosh et al., Ukr. Fiz. Zh. 31, 1703 (1986). Received 30.12.09. Translated from Ukrainian by V.V. Kukhtin КОНЦЕНТРАЦIЙНI ОСОБЛИВОСТI ДИНАМIКИ МОЛЕКУЛ РОЗЧИНIВ ВОДА—ПРОПИЛОВИЙ СПИРТ Л.А. Булавiн, Н.О. Атамась, О.А. Василькевич, Г.М. Вербiнская, В.I. Слiсенко, О.В. Ковальов Р е з ю м е Методом квазiпружного розсiяння повiльних нейтронiв проведено дослiдження динамiки молекул розчинiв вода– пропиловий спирт рiзної концентрацiї при температурi 281 К. Експериментально виявлено особливостi концентрацiйної залежностi ефективного коефiцiєнта самодифузiї та його одночастинкового внеску, а саме: наявнiсть двох мiнiмумiв в областях концентрацiй (0,04–0,05) м.д. i (0,18–0,22) м.д. спирту та монотонне зростання коефiцiєнта дифузiї при концентра- цiях, бiльших за 0,4 м.д. спирту. Результати нейтронного експерименту зiставлено з розрахунками структури указаних розчинiв, проведених методом Монте-Карло. Показано, що мi- нiмуми у концентрацiйнiй залежностi коефiцiєнта самодифузiї вiдповiдають певним локальним структурам дослiдженого розчину. 698 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 6