Приближенный анализ нелинейной конвективной математической модели
Изучаются теплофизические процессы, сопровождающиеся фазовыми переходами вещества, описываемые математической моделью, в которой температура каждой из фаз удовлетворяет уравнению переноса тепла со своими теплофизическими коэффициентами, на границе раздела фаз, обе температуры постоянны и равны темпе...
Gespeichert in:
| Datum: | 2012 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут проблем штучного інтелекту МОН України та НАН України
2012
|
| Schriftenreihe: | Штучний інтелект |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/56425 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Приближенный анализ нелинейной конвективной математической модели / А.С. Миненко // Штучний інтелект. — 2012. — № 1. — С. 60-65. — Бібліогр.: 8 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Изучаются теплофизические процессы, сопровождающиеся фазовыми переходами вещества, описываемые математической моделью, в которой температура каждой из фаз удовлетворяет уравнению переноса тепла со своими теплофизическими коэффициентами, на границе раздела фаз, обе температуры постоянны и равны температуре фазового перехода, а на заданных частях границы поддерживается определенный режим. Поверхность раздела фаз («свободная граница») является неизвестной и для ее определения дополнительно задается условие Стефана. Это условие превращает математическую модель в нелинейную проблему большой трудности. Для описания поля скоростей в жидкой фазе используется система уравнений Навье-Стокса. Для решения задачи предложен метод малого параметра. |
|---|