Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
The notions of compact convex variation and compact convex subdifferential for the mappings from a segment into a locally convex space (LCS) are studied. In the case of an arbitrary complete LCS, each indefinite Bochner integral has compact variation and each strongly absolutely continuous and compa...
Gespeichert in:
| Datum: | 2009 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2009
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/5697 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Compact variation, compact subdifferentiability and indefinite Bochner integral / I.V. Orlov, F.S. Stonyakin // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 74-90. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-5697 |
|---|---|
| record_format |
dspace |
| spelling |
Orlov, I.V. Stonyakin, F.S. 2010-02-02T12:56:37Z 2010-02-02T12:56:37Z 2009 Compact variation, compact subdifferentiability and indefinite Bochner integral / I.V. Orlov, F.S. Stonyakin // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 74-90. — Бібліогр.: 24 назв. — англ. 1029-3531 https://nasplib.isofts.kiev.ua/handle/123456789/5697 The notions of compact convex variation and compact convex subdifferential for the mappings from a segment into a locally convex space (LCS) are studied. In the case of an arbitrary complete LCS, each indefinite Bochner integral has compact variation and each strongly absolutely continuous and compact subdifferentiable a.e. mapping is an indefinite Bochner integral. en Інститут математики НАН України Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral |
| spellingShingle |
Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral Orlov, I.V. Stonyakin, F.S. |
| title_short |
Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral |
| title_full |
Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral |
| title_fullStr |
Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral |
| title_full_unstemmed |
Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral |
| title_sort |
compact variation, compact subdifferetiability and indefinite bochner integral |
| author |
Orlov, I.V. Stonyakin, F.S. |
| author_facet |
Orlov, I.V. Stonyakin, F.S. |
| publishDate |
2009 |
| language |
English |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The notions of compact convex variation and compact convex subdifferential for the mappings from a segment into a locally convex space (LCS) are studied. In the case of an arbitrary complete LCS, each indefinite Bochner integral has compact variation and each strongly absolutely continuous and compact subdifferentiable a.e. mapping is an indefinite Bochner integral.
|
| issn |
1029-3531 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/5697 |
| citation_txt |
Compact variation, compact subdifferentiability and indefinite Bochner integral / I.V. Orlov, F.S. Stonyakin // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 74-90. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT orloviv compactvariationcompactsubdifferetiabilityandindefinitebochnerintegral AT stonyakinfs compactvariationcompactsubdifferetiabilityandindefinitebochnerintegral |
| first_indexed |
2025-11-30T13:23:29Z |
| last_indexed |
2025-11-30T13:23:29Z |
| _version_ |
1850857678351368192 |