Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral

The notions of compact convex variation and compact convex subdifferential for the mappings from a segment into a locally convex space (LCS) are studied. In the case of an arbitrary complete LCS, each indefinite Bochner integral has compact variation and each strongly absolutely continuous and compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Orlov, I.V., Stonyakin, F.S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/5697
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Compact variation, compact subdifferentiability and indefinite Bochner integral / I.V. Orlov, F.S. Stonyakin // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 74-90. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-5697
record_format dspace
spelling Orlov, I.V.
Stonyakin, F.S.
2010-02-02T12:56:37Z
2010-02-02T12:56:37Z
2009
Compact variation, compact subdifferentiability and indefinite Bochner integral / I.V. Orlov, F.S. Stonyakin // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 74-90. — Бібліогр.: 24 назв. — англ.
1029-3531
https://nasplib.isofts.kiev.ua/handle/123456789/5697
The notions of compact convex variation and compact convex subdifferential for the mappings from a segment into a locally convex space (LCS) are studied. In the case of an arbitrary complete LCS, each indefinite Bochner integral has compact variation and each strongly absolutely continuous and compact subdifferentiable a.e. mapping is an indefinite Bochner integral.
en
Інститут математики НАН України
Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
spellingShingle Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
Orlov, I.V.
Stonyakin, F.S.
title_short Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
title_full Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
title_fullStr Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
title_full_unstemmed Compact Variation, Compact Subdifferetiability and Indefinite Bochner Integral
title_sort compact variation, compact subdifferetiability and indefinite bochner integral
author Orlov, I.V.
Stonyakin, F.S.
author_facet Orlov, I.V.
Stonyakin, F.S.
publishDate 2009
language English
publisher Інститут математики НАН України
format Article
description The notions of compact convex variation and compact convex subdifferential for the mappings from a segment into a locally convex space (LCS) are studied. In the case of an arbitrary complete LCS, each indefinite Bochner integral has compact variation and each strongly absolutely continuous and compact subdifferentiable a.e. mapping is an indefinite Bochner integral.
issn 1029-3531
url https://nasplib.isofts.kiev.ua/handle/123456789/5697
citation_txt Compact variation, compact subdifferentiability and indefinite Bochner integral / I.V. Orlov, F.S. Stonyakin // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 1. — С. 74-90. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT orloviv compactvariationcompactsubdifferetiabilityandindefinitebochnerintegral
AT stonyakinfs compactvariationcompactsubdifferetiabilityandindefinitebochnerintegral
first_indexed 2025-11-30T13:23:29Z
last_indexed 2025-11-30T13:23:29Z
_version_ 1850857678351368192