Sustainable mined lands rehabilitation using landscape biomimicry
Article reviews main theoretical and practical issues in the field of biomimicry at landscape level for mined lands rehabilitation. It also includes a successful practical case study of biodiversity development centers creation on open-cut mining lands. У статті наведені основні теоретичні та практи...
Збережено в:
| Опубліковано в: : | Екологія і природокористування |
|---|---|
| Дата: | 2013 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут проблем природокористування та екології НАН України
2013
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/57489 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Sustainable mined lands rehabilitation using landscape biomimicry / S.M. Smetana, O.M. Smetana // Екологія і природокористування. — 2013. — Вип. 16. — С. 146-156. — Бібліогр.: 62 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-57489 |
|---|---|
| record_format |
dspace |
| spelling |
Smetana, S.M. Smetana, O.M. 2014-03-10T11:55:37Z 2014-03-10T11:55:37Z 2013 Sustainable mined lands rehabilitation using landscape biomimicry / S.M. Smetana, O.M. Smetana // Екологія і природокористування. — 2013. — Вип. 16. — С. 146-156. — Бібліогр.: 62 назв. — англ. XXXX-0010 https://nasplib.isofts.kiev.ua/handle/123456789/57489 504.4 Article reviews main theoretical and practical issues in the field of biomimicry at landscape level for mined lands rehabilitation. It also includes a successful practical case study of biodiversity development centers creation on open-cut mining lands. У статті наведені основні теоретичні та практичні наробки з напрямку біомімікрії на ландшафтному рівні при відновлені порушених гірничими роботами земель. Наведено успішний практичний приклад створення центрів відновлення біорізноманіття на порушених землях за відкритої розробки корисних копалин. В статье приведены основные теоретические и практические наработки в направлении биомимикрии на ландшафтном уровне при восстановлении нарушенных горными работами земель. Приведен успешный практический пример создания центров восстановления биоразнообразия на нарушенных землях при открытой разработке полезных ископаемых. en Інститут проблем природокористування та екології НАН України Екологія і природокористування Особливості функціонування великих гео-техно-екосистем Sustainable mined lands rehabilitation using landscape biomimicry Відновлення порушених гірничими роботами земель для сталого функціонування з використанням ландшафтної біомімікрії Восстановление нарушенных горными работами земель для устойчивого функционирования с использованием ландшафтной биомимикрии Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Sustainable mined lands rehabilitation using landscape biomimicry |
| spellingShingle |
Sustainable mined lands rehabilitation using landscape biomimicry Smetana, S.M. Smetana, O.M. Особливості функціонування великих гео-техно-екосистем |
| title_short |
Sustainable mined lands rehabilitation using landscape biomimicry |
| title_full |
Sustainable mined lands rehabilitation using landscape biomimicry |
| title_fullStr |
Sustainable mined lands rehabilitation using landscape biomimicry |
| title_full_unstemmed |
Sustainable mined lands rehabilitation using landscape biomimicry |
| title_sort |
sustainable mined lands rehabilitation using landscape biomimicry |
| author |
Smetana, S.M. Smetana, O.M. |
| author_facet |
Smetana, S.M. Smetana, O.M. |
| topic |
Особливості функціонування великих гео-техно-екосистем |
| topic_facet |
Особливості функціонування великих гео-техно-екосистем |
| publishDate |
2013 |
| language |
English |
| container_title |
Екологія і природокористування |
| publisher |
Інститут проблем природокористування та екології НАН України |
| format |
Article |
| title_alt |
Відновлення порушених гірничими роботами земель для сталого функціонування з використанням ландшафтної біомімікрії Восстановление нарушенных горными работами земель для устойчивого функционирования с использованием ландшафтной биомимикрии |
| description |
Article reviews main theoretical and practical issues in the field of biomimicry at landscape level for mined lands rehabilitation. It also includes a successful practical case study of biodiversity development centers creation on open-cut mining lands.
У статті наведені основні теоретичні та практичні наробки з напрямку біомімікрії на ландшафтному рівні при відновлені порушених гірничими роботами земель. Наведено успішний практичний приклад створення центрів відновлення біорізноманіття на порушених землях за відкритої розробки корисних копалин.
В статье приведены основные теоретические и практические наработки в направлении биомимикрии на ландшафтном уровне при восстановлении нарушенных горными работами земель. Приведен успешный практический пример создания центров восстановления биоразнообразия на нарушенных землях при открытой разработке полезных ископаемых.
|
| issn |
XXXX-0010 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/57489 |
| citation_txt |
Sustainable mined lands rehabilitation using landscape biomimicry / S.M. Smetana, O.M. Smetana // Екологія і природокористування. — 2013. — Вип. 16. — С. 146-156. — Бібліогр.: 62 назв. — англ. |
| work_keys_str_mv |
AT smetanasm sustainableminedlandsrehabilitationusinglandscapebiomimicry AT smetanaom sustainableminedlandsrehabilitationusinglandscapebiomimicry AT smetanasm vídnovlennâporušenihgírničimirobotamizemelʹdlâstalogofunkcíonuvannâzvikoristannâmlandšaftnoíbíomímíkríí AT smetanaom vídnovlennâporušenihgírničimirobotamizemelʹdlâstalogofunkcíonuvannâzvikoristannâmlandšaftnoíbíomímíkríí AT smetanasm vosstanovlenienarušennyhgornymirabotamizemelʹdlâustoičivogofunkcionirovaniâsispolʹzovaniemlandšaftnoibiomimikrii AT smetanaom vosstanovlenienarušennyhgornymirabotamizemelʹdlâustoičivogofunkcionirovaniâsispolʹzovaniemlandšaftnoibiomimikrii |
| first_indexed |
2025-11-27T06:29:14Z |
| last_indexed |
2025-11-27T06:29:14Z |
| _version_ |
1850805020508815360 |
| fulltext |
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
146
УДК 504.4
S.M. SMETANA, Brook Byers Institute of Sustainable Systems, Georgia Institute of Tech-
nology, Atlanta, GA, USA, Ph.D. in Environmental Safety (Technical), Visiting Fulbright Re-
searcher
O.M. SMETANA, Kryvyi Rih Botanical Garden of NASU, Kryvyi Rih, Ukraine, Ph.D.
in Biology (Ecology), Head of Industrial Landscape Optimization Department
SUSTAINABLE MINED LANDS REHABILITATION USING
LANDSCAPE BIOMIMICRY
Article reviews main theoretical and practical issues in the field of biomimicry at landscape
level for mined lands rehabilitation. It also includes a successful practical case study of biodiver-
sity development centers creation on open-cut mining lands.
Keywords: landscape biomimicry, mined lands, sustainable rehabilitation
Problem Statement
The world consumption of natural resources
increases with exponential growth of population
[1]. The scarcest resources are minerals and fos-
sil fuels [2]. Although the problem of mineral
resources scarcity is not in the depletion (the
amount of the chemical elements is constant in
the environment) but rather in the crisis of the
technological qualities to supply sufficient amo-
unt of the resources for the human needs [3, 4].
Today mining explores deposits with the lowest
ever concentration of the mined elements and
the technologies itself become more expensive
[4, 5]. Thus, intense mining causes the
destruction of large land areas. The rehabilitation
techniques, on the other hand, have not been as
actively and intensively developed.
The development of very expensive and res-
ource intense rehabilitation technologies has
been a very popular trend in mined lands reh-
abilitation. It is caused by the idea that the des-
tructed lands should be returned to the env-
ironment and society in the natural condition (to
the condition equal to that for premining state).
This concept misled scientist and engineers
towards the development of intensive and
expensive technologies [6]. They often
underestimate the value of self rehabilitation,
succession plant community potential, and
exceptional conditions created. Moreover, often
newly self established ecosystems are destroyed
to create “a natural system analogy” [7]. More
than that there is nothing sustainable in such
resource consuming technologies especially if
they are not successful.
It is possible to copy techniques used by the
nature for the mined lands rehabilitation. We
claim that it is should be done at the landscape
level evolving all the lower nature organization
levels. Only complex rehabilitation approach
with multiple levels of nature imitation, future
use, and functions could result in sustainable
mining lands rehabilitation technologies.
Literature Review
World population exponential growth, dom-
inating urbanization [8], increased need in nat-
ural resources and doubled the world mining
production for the last 20-30 years [9, 10]. Min-
ing production is based on lands transformation
and, therefore, caused exponential rates of
mined lands destruction (figure 1-3). The data
available from various resources (Alcoa
Company, World Gold Council) confirms that
current rate of mined lands rehabilitation is
© Smetana S.M., Smetana O.M., 2013
stable the level of 0,1 – 1% of the destructed
area annually. Such data allows making an as-
sumption, that with current rates of land reha-
bilitation we will need more than 100 years to
restore all the mined lands (at this moment).
And many more destructions are foreseen in the
future.
The reasons of slow rehabilitation rates are in
the lack of appropriate technologies develop-
ment, low efficiency and high price of old tech-
nologies [11], and natural causes [12]. However,
the technologies which include the use of native
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
147
Figure 1 – World steel production trends and projections [9]
plants in the mining lands rehabilitation [12],
natural succession changes [6, 13-15], self resto-
ration in general [7] are well described in the
literature and in some cases used in the field.
Mining destructed landscape rehabilitation proc-
ess consists of 10 sequential steps [16-17]:
1) Site characterization;
2) Planning and engineering;
3) Material management;
4) Topographic reconstruction;
5) Replacement of topsoil or soil substitute;
6) Surface manipulation;
7) Addition of soil amendments;
8) Revegetation;
9) Irrigation, if needed;
10) Site monitoring and maintenance.
Such standard approach require a lot of fi-
nancial, time and labor resources and have a
large environmental impact [18].The cases of
rehabilitation failure supply additional doubts
about the sustainability of the technologies [19].
The problem in mentioned concept is con-
nected with the means of nature imitation. Reha-
bilitation techniques involve intense earth mass
movements, layering, irrigation, topographic
reconstruction etc. Natural processes work with
fewer inputs and with much higher effects [20].
Such conclusions come from discipline known
since 1960 and called bionics, but it became
more intensively used and researched since the
publication of the book by Janine Benyus in
1997. She is the one of those who tried to sum-
mary all the approaches of the nature imitation
techniques in fairly simple but effective princi-
ples.
Biomimicry is the examination of nature, its
models, systems, processes, and elements to
emulate or take inspiration from in order to solve
human problems [21]. It is the most successful in
the fields of engineering, design and architecture.
There are quite a few examples where biomim-
icry is used at the landscape level. There could
be multiple reasons for that and we are not going
to discuss them in this paper. And it is interesting
that mined lands rehabilitation should be a bright
example of nature imitation at multiple levels,
but it is not. Bradshaw mentioned that it hap-
pened due to the technical issues dominance in
the restoration projects [7]. Others claimed that
anthropocentric attitude caused the development
of agricultural restoration. Modern trend today is
ecosystem restoration [11, 22] – we attempt cre-
ate ecosystems on mined areas and use their eco-
systems services for future generations. On our
mind the most sustainable and most nature ori-
ented way of sustainable restoration is mined
lands conversion into conserved areas (reserva-
tions, parks, open areas). It has been done in
many areas via cooperation of scientists and in-
dustrial engineers [23, 24].
In this paper we present a system approach
towards nature imitation in mining destructed
territories restoration. It includes the collocation
of well known and original mined lands restora-
tion methods in the complex nature imitation
systems of landscape restoration.
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
148
Figure 2 – Historical trends in production of iron ore and crude steel in the major
producing countries of the world [9]
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
149
Figure 3 – Cumulative world production of iron (Fe) ore, gold (Au), copper (Cu), and tin (Sn) [10]
Sustainability in land reclamation
Relief construction. Mining lands rehabilita-
tion is considered to be a pathway to sustainabil-
ity of the area, as if its aim is to meet main goal
of sustainability – provide land resources for
future generations. But at the same time the
needs of ecosystems and natural environment are
often ignored. Mining industry excavate or pump
mineral resources and fossil fuel, destruct a lot of
lands, then use extra resources for restoration,
which will be useful for human needs – such
anthropogenic approach is often called sustain-
able in the industry and in the science literature
[25-26].
On the other hand the sustainable mining and
rehabilitation techniques should be connected
with analysis of resources use, human health and
ecosystem state. Recently there have been im-
provements in the development of mining sus-
tainable sound methods and practices. Yu et al.,
Si et al., Vatalis and Kaliampakos have devel-
oped mining specific environmental impact as-
sessment methodologies and techniques [27-30].
Members of the American Society of Mining
and Reclamation developed an ecosystem recla-
mation approach (ERA), which is oriented
mainly on geomorphic landscape design, which
mimics stable mountain slopes as they present in
nature. Such approach is claimed to be cost-
effective, attractive and resistant to surface ero-
sion and mass movements [31]. Their geomor-
phic design mimics natural landscapes the way
they were in pre mining state. The main idea of
such approach is to achieve functional and aes-
thetic nature-like characteristics by mimicking
nature landscape drainage patterns and relief
forms [32]. At the same time such approach does
not include the change of mining field regula-
tions and “blind” use of the geomorphic ap-
proach will result in construction of new native-
like landforms and reclamation cost increase af-
ter the main excavation processes are over [33].
Further analysis of the existing techniques con-
cludes that ERA includes specific techniques as
natural channel design (stream reconstruction),
region and site specific native soils and plants
adaptation [31].
Native plants use. The definition of “native”
plants and therefore “alien” or “invasive” plants
is quite unclear in modern literature. D. Tallamy
and R. Darke in their book represent an opinion
that if the plant has been for a long time in the
studied area “it could be considered as a native
regardless of its evolutionary origin”. In order to
clarify the definition they used “coevolving” pri-
nciple, which defines native plants as those whi-
ch established connections with other elements
of the ecosystem [35]. It is obvious then that
newly installed invasive plants are not the part of
historical ecosystem because they do not have
established interactions with living organisms’
communities. At the same time newly intruded
plant species sometimes evolve into ecosystem
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
150
interactions very fast. It happens in the cases
when an invasive plant is a relative to native pla-
nt species and therefore surrounding community
is “preadapted” to the interactions with such spe-
cies [35]. Another example is when invasive pla-
nts are honey plants and therefore they attract
bees and other insects and interact with them in
short period of time [36, 37]. We tend to accept
the definition of EPA which defines native plants
or indigenous plants as those evolved over thou-
sands of years in a particular region. It is allowed
them to be adapted to the geography, hydrology,
climate and other species in the region [38].
Despite the popularity the use of native plants
in industrial lands rehabilitation is quite limited
due to the unusual for regions local environ-
mental conditions. Geographically separated ar-
eas, with different than local conditions, become
“desert islands” for local ecosystems. One of the
limitations for ecosystem developments on post-
inductrial areas is the lack of the seed banks of
appropriate plant species. Using seeding tech-
niques of appropriate adapted plant species was
the most successful introduction techniques,
which has advantages of easy handling and ready
availability, as well as ensuring a wide genetic
base [13]. However, succession changes, which
lead to the native ecosystem establishment, could
be started with non-native plants. Such pro-
native approach was proven to be successful on
mining areas of Australia [12].
Mining rehabilitation was successful in West-
ern Australia done by Alcoa on post bauxite min-
ing areas. The company practitioners used a
complex of techniques to make the technology
successful: reconstruction of the soil root zone,
special plant seeding technique and post-
installation monitoring. Immediate soil replace-
ment, seeding with mixture of 60 native species
with increased germination via smoke together
with fauna corridors and habitat construction
insure the success of the technology [12].
In certain areas of Australia the rehabilitation
was so successful that post-mining areas were
included in the network of national parks and
nature reserves. They are especially valuable
owing to wetlands creation options. There are 91
sites reported, which perform nature preservation
functions [12]. It was possible on the mineral
sands mining areas with the use of rehabilitation
principles set [12, 39-40]:
- рre-mining surveys of soils, vegetation,
fauna and heritage;
- seed collection of key species from the local
to mine lands to conserve genetic material with
attention being paid to the seed quality and stor-
age conditions;
- recovery of topsoil immediately prior to
mining, incorporating biomass of shrubs and
groundcover or ash from burning of trees;
- reconstruction of landform immediately fol-
lowing mining to re-establish topographic pat-
terns, with particular emphasis on drainage;
- early replacement of topsoil to minimize its
storage time;
- surface stabilization to enable establishment
of native species, many of which have small see-
dlings and are slow to establish;
- application of moderate doses of mixed fer-
tilizer to aid early vegetation establishment;
- direct seeding of native species as the most
biologically and economically efficient means of
regeneration (up to 100 species were included in
the mix);
- enhancement planting of nursery seedlings
for species that are difficult to propagate with
field techniques (breaking of dormancy of recal-
citrant species with smoke);
- monitoring of ecosystem development, with
techniques ranging from visual inspection to
computerized sampling.
Scientists from Commonwealth of Inde-
pendent States have completed enormous
amounts of research in coal mining lands reha-
bilitation [42-43]. Native plants use following
the necessary detoxication of the substrates was
proposed among other rehabilitation techniques.
Australian practitioners moved towards estab-
lishment of self-sustaining native woodlands
(Eucalyptus) in areas of sub-humid, subtropical
climate. Their approach included alternative
landforms design (ponds reshaping for runoff
accumulation, moderate external slopes with
sediment traps at the toes), slopes topsoil strips
replacement and aerial seeding of a mix of
grass, shrub and tree species [12].
Landscape level approach. In 1997 David
Tongway with the group of scientists from CSI-
RO Division of Wildlife and Ecology created an
Ecosystem Function Analysis for mined area as a
response on the request of the Australian Centre
for Minesite Rehabilitation Research
(now the Australian Centre for Mining Environ-
mental Research). It was based on 20 years ex-
perience of rangelands studies, and data from
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
151
bauxite, mineral sands, coal, gold, uranium,
nickel and iron ore mines with various climates.
Ecosystem Function Analysis (EFA) is con-
sisted of 3 main modules for the evaluation of
mined landscape [12, 44, 45]:
1) Landscape function analysis;
2) Vegetation dynamics;
3) Habitat complexity.
Landscape function analysis involves two
steps: landscape stratification along transects
oriented in the dominant direction of resource
mobility and measuring zones in the landscape
which either lose or accumulate mobile re-
sources; soil surface condition characterization
by assessment into various classes of 10 features
at each of the landscape zone types along a tran-
sect. Vegetation dynamics module is assessed by
using measures of species composition, species
similarity to an analogue “natural” site, presence
of “shade and shelter” species and target species
development, important to the ecosystem self-
sustainability. Habitat complexity index esti-
mated for each rehabilitated and analogue site is
based on five features, visual canopy cover, shr-
ub cover, ground vegetation cover, the amount of
litter, fallen logs and rocks, and free water avail-
ability. The summary of the scores for each fea-
ture gives the overall comparable habitat com-
plexity score. The advantages of EFA are in the
indices comparability of rehabilitate, mined and
natural areas as for their landscape function, and
in quick and simple conductivity [12].
Biomimicry and bioengineering. Dr. Eugene
Odum wrote that “in nature there are a lot of an-
swers about what we should be doing in society.
Nature has been here longer than humans and
has survived a lot of catastrophes” [46]. The
main idea of biomimicry is the imitation of liv-
ing organisms design, materials and processes in
industrial technologies. Such approach should
minimize toxicity, celebrate diversity, curb de-
mand and make connections [20]. The main
methods of biomimicry use are: seek simple so-
lutions, value place, move resource impact to-
ward zero, rethink waste, use renewable inputs
and use non-hazardous materials [47]. There
could be multiple applications of the design
principles in mined lands rehabilitation.
Seeking simple solutions means use less tec-
hnological approach, fewer materials, fewer
elements for completion of the same function. It
might be done through the “passive design”
when passive natural systems are included [48-
50]. It results in reduction of costs, wastes and
resources use. For example, in mining areas re-
habilitation, a more simple design would be
placement of nutritious for plants and animals
matters on the top places of the slopes for their
natural distribution along the slopes and water
flows versus applying layers of soil-like materi-
als. It is a few times cheaper, simple to use and
will result in matter distribution in the places
which perform a bigger landscape and ecosystem
function.
Valuing places is especially important for the
rehabilitation of mined areas, taking into account
their position in the cities and enormous land
usage. In the mining field it is common today to
search for the possibilities of steep slopes explo-
ration in super deep quarries [51]. In rehabilita-
tion it is also important to preserve surrounding
areas from destruction via restoration of steeper
slopes [23]. The value of the place might be es-
timated also in the destructed landscape as well.
As it is mentioned above, mined areas could be
used for native areas preservations, museums, or
reserved for other uses.
Sustainability requires the resource impact
of the humanity to be shifted towards zero. It is
possible to do through the maximization of the
resource efficiency and resource demand mini-
mization [48-50]. It could be done through the
use of life cycle analysis of the resources use in
technologies [52]. It also implies the use of re-
newable resources in mining rehabilitation. For
example, instead of using the topsoil, which is
considered as non-renewable resource in Ukr-
aine, should be used wastewater sediments, pla-
nts residues, wooden chips, straw etc. The need
to avoid the hazardous materials is still present.
Rethinking waste is the most essential trait
in the sustainability, which means that if all the
waste could be sources for other processes –
than we would create an analogue of natural
system. Designers promote the use of “three R
principle”: reduce, reuse and recycle. Up-cycle
is also a necessary option taking into account
the amount of nowadays wastes [53]. In reha-
bilitation techniques the wastes of rock material
could serve as a building material or as pro-
longed fertilizer. High waste banks might be
suitable for wind generators and solar panels.
Water harvesting from mined areas for indus-
trial, residential and agricultural use could pre-
vent leakages and supply increased demand in
water. The need to extract multiple recourses
from single mining action is also of a high pri-
ority.
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
152
Renewable inputs require the substitution of
resources, which have a long period of regen-
eration. This way the needs in resources of
modern generation will not be set as a higher
priority than needs of future generations [54].
We have already written of the need to substi-
tute the soil layers with more easily regenerated
materials. The implementation of the principle
focuses on the use of passive methods of reha-
bilitation versus active technical oil-based re-
cultivation. Among passive methods there are
geochemical (barriers, flows), bioengineering
(various biological self covering materials),
biodistribution and others. For example, soil
bioengineering, which uses living vegetation
and other materials, is successfully used to sta-
bilize slopes, control erosion and enhance the
functioning of ecosystems. Ecological (bio)
engineering is often much cheaper and uses less
resources than traditional engineering ap-
proaches [55-56].
Non-hazardous materials inputs rely on their
safety for human, environmental and economic
health [47, 57]. This obvious principle bans the
use of synthetic covers for the rehabilitated ar-
eas, chemical pesticides and fertilizers. It also
refers to the need of rock waste environmental
control (radioactive, chemical and biological)
and risk of various substrates application (waste
sludge, plant residues, food production wastes).
Sustainable rehabilitation system construc-
tion – a case study. Human influence on natural
ecosystems is diverse and dynamic. It involves
extensive inputs of energy, labor and technolo-
gies, which in combination lead to the dynamic
environmental destructions. Their rehabilitation
requires additional energy, resources and labor.
Natural ecosystems nevertheless are self-
restored through some time via succession se-
rial changes. Using this trait we propose mobile
biodiversity centers creation to activate succes-
sion changes and biodiversity development
within destructed environments.
The main idea of biodiversity distribution
centers creation has been developed during
natural and industrial ecosystems research done
in 1996-2012. The biodiversity analysis con-
firms that biodiversity is linked to the develop-
ment of the whole community and not just
separate organisms’ distribution. The statement
is supported by D. Hooper, P. Vitousek, M.
Loreau and others, who indicated biodiversity
significance for ecosystems development and
their functioning [58-60]. The creation of whole
functioning climax ecosystem community is
problematic to accomplish due to its common
extensive sizes [61]. And even if it would be
possible changing environment should destroy
such ecosystem due to human activities within
certain time frame. That’s why we developed
the idea of mobile communities able to move
away from the influence within the certain time
and place frame. However is possible to trans-
fer the vital part of a terrestrial ecosystem – its
core plant community. This way we may create
high biodiversity ecosystems with mobile bio-
diversity development cores (BDC).
The proposed principle of mobile BDC crea-
tion was tested on mining destructed lands. Sur-
face strip mining technology involves continuous
moving of excavation front together with recla-
mation areas following it in a distance. There is
only a narrow strip of land suitable for biodiver-
sity development within the quarry, which would
reach the final open pit. Therefore we set 4 ex-
perimental cores for biodiversity centers devel-
opment within the confines of international
competition “Quarry Life Award” in 2012. They
are constructed with two interchangeable con-
tainer types (permeable bags, plastic boxes with
holes) and composed with rare 11 plants species
in monoliths of soil with associated mezofauna
and microbiota. The surrounding area was en-
riched with seeds of the steppe plants (according
to the climate zone). The results showed most
plants survival rate of 90-94 %. Even though
some species died (Caragana scyhtica (Kom.)
Pojark; Chamaecytisus graniticus (Rehman)
Rothm.), others started distribution in surround-
ing areas (Stipa capillata L., Stipa lessingiana
Trin. Et Rupr., Vinca herbacea Waldst. ex Kit.).
The implementation of the project allowed
us to determine main mobile BDC chracteris-
tics. Organisms’ development in the BDC and
successful distribution depend on the successful
placement within litho-geochemical flows of
quarry [62]. Mobile BDC should be assembled
with interchangeable permeable containers ar-
ranged according to the desired use of hydro
and gravitational litho-geochemical flows (fig-
ure 4). The successful development of plants in
containers also depends on presence of ‘plant-
soil-microbiota’ monoliths as a supporting envi-
ronment. Mobile BDC should consist of peren-
nial plants and other organisms appropriate for
the specific climate (best taken locally) and
substrate conditions. This way, mobile BDC
could be installed in the substrate at any place
within the quarry and start biodiversity devel-
opment. After 2-3 years the BDC could be
moved to another place to start a new biodiver-
sity center (figure 4).
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
153
Figure 4 – BDC placement and spatial development dynamics within a quarry
Such BDC have both ecological and techno-
logical advantages. They enrich human destruc-
ted areas with native biodiversity. Technological
benefits are in mobility, possible BDC elements
reconstruction and multiple times use. Further
development of BDC will result in industrial
areas biodiversity development technology crea-
tion, which could be used on mining, agricultural
and other human destructed lands.
Conclusions
1. Sustainable development of mined land-
scapes includes their sustainable rehabilitation.
Current existing traditional technologies are ex-
pensive, environmentally harmful and dangerous
for human health taking into consideration high
amounts of resources use through the life cycle
assessment.
2. Sustainable rehabilitation includes nature
imitation approach with its application in soil
bioengineering, relief construction and landscape
function analysis implementation.
3. The rehabilitation of open cut mined lands
could be realized at landscape level with multi-
ple approaches implementation, for example
through the biodiversity development centers
construction.
References
1. Meadows D.H. Beyond the limits: global collapse or a sustainable future / Meadows D.H., Meadows D.L.,
Randers J. – 1992 – 300 p.
2. Craig J. R. Resources of the earth: origin, use, and environmental impact / Craig J.R., Vaughan D.J.,
Skinner B.J. – 1996 – 472 p.
3. Методические подходы к выбору стратегии устойчивого развития территории / А.Г. Шапарь,
С.З. Полищук и др.: Под научной редакцией проф., д-ра техн. наук А.Г. Шапаря – Днепропетровск: Ин-т
проблем природопользования и экологии НАН Украины,1996. – Том 1 – 162 с. Том 2 – 170 с.
4. Формирование и разработка техногенных месторождений и марганцевых руд / [Шапарь А.Г., Вилкул
А.Ю., Копач П.І., Якубенко Л.В.] – Днепропетровск: Монолит, 2012. – 140с.
5. Owens B. Mining: Extreme prospects / B. Owens // Nature. – 2013. – 495(7440), S4–S6. Retrieved from
http://dx.doi.org/10.1038/495S4a
6. Technical reclamation and spontaneous succession produce different water habitats: a case study from Czech
post-mining sites / Doleˇzalova J., Vojar J., Smolova D., Solsky´ M., Kopecky´ O. // Ecological Engineering. –
2012. – # 43. – P 5–12.
7. Bradshaw A. Restoration of mined lands – using natural processes / A. Bradshaw // Ecological Engineering.
– 1997. – # 8(4). – 255–269. doi:http://dx.doi.org/10.1016/S0925-8574(97)00022-0
http://dx.doi.org/10.1038/495S4a
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
154
8. United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization
Prospects, the 2011 Revision, New York. – 2012.
9. Yellishetty M. Iron ore and steel production trends and material flows in the world: Is this really sustainable?
/ Yellishetty M., Ranjith P. G., Tharumarajah A. // Resources, Conservation and Recycling. – 2010. – #54(12). –
P. 1084–1094. doi:http://dx.doi.org/10.1016/j.resconrec.2010.03.003
10. Wellmer F.-W. World natural resources policy – Focussing on mineral resources / Wellmer F.-W., Becker-
Platen J.D. // Our fragile world – Challenges and opportunities for sustainable development: Oxford, U.K., Enc-
yclopedia of Life Support Systems Publishers Co. Ltd. – 2001. – v. 1. – P. 183–207.
11. Doley D. Examining the Australian context for post-mined land rehabilitation: Reconciling a paradigm for
the development of natural and novel ecosystems among post-disturbance landscapes / Doley D., Audet P., Mul-
ligan D. R. // Agriculture, Ecosystems & Environment. – 2012. – vol. 163(0). – P. 85–93.
doi:http://dx.doi.org/10.1016/j.agee.2012.04.022.
12. Bell L.C. Establishment of native ecosystems after mining – Australian experience across diverse
biogeographic zones / L. C. Bell // Ecological Engineering. – 2001. – vol. 17(2-3). – P. 179–186.
doi:10.1016/S0925-8574(00)00157-9.
13. Ash H.J. The introduction of native plant species on industrial waste heaps: a test of immigration and other
factors affecting primary succession / H.J. Ash, R.P. Gemmell, A.D. Bradshaw // Journal of Applied Ecology. –
1994. – # 31. – P. 74-84.
14. Prach K. Using spontaneous succession for restoration of human disturbed habitats: experience from Central
Europe / Prach K., Pyˇsek P. // Ecological Engineering. – 2001. – P. 17, 55–62.
15. Tropek R. Technical reclamations are wasting the conservation potential of post-mining sites. A case study
of black coal spoil dumps / Tropek R., Kadlec T., Hejda M., Kocarek P., Skuhrovec J., Malenovsky I., Vodka S.,
Spitzer L., Banar P., Konvicka M. // Ecological Engineering. – 2012. – # 43. – P. 13–18.
16. Toy T.J. Topographic reconstruction: a geomorphic approach / Toy T.J., Chuse W.R. // Ecological
Engineering. – 2005. – # 24. – P. 29–35.
17. Menegaki M.E. Evaluating mining landscape: A step forward / Menegaki M.E., Kaliampakos D.C. //
Ecological Engineering. – 2012. – #43(0). – P. 26–33. doi:http://dx.doi.org/10.1016/j.ecoleng.2011.02.011.
18. Durucan S. Mining life cycle modelling: a cradle-to-gate approach to environmental management in the
minerals industry / Durucan S., Korre A., & Munoz-Melendez G. // Journal of Cleaner Production. – 2006. – vol.
14(12–13). – P. 1057–1070. doi:http://dx.doi.org/10.1016/j.jclepro.2004.12.021
19. Josa R. Opencast mine restoration in a Mediterranean semi-arid environment: Failure of some common
practices / Josa R., Jorba M., & Vallejo V.R. // Ecological Engineering. – 2012. – # 42. – P. 183–191.
doi:10.1016/j.ecoleng.2012.02.020.
20. Benyus J.M. Biomimicry: innovations inspired by nature / J.M. Benyus – HarperCollins, 2009. – 320 p.
21. Biomimicry definition. Retrieved from: http://en.wikipedia.org/wiki/Biomimicry
22. Williams E.R. Using insect diversity for determining land restoration development: Examining the influence
of grazing history on ant assemblages in rehabilitated pasture / Williams E.R., Mulligan D.R., Erskine P.D., & Plo-
wman K.P. // Agriculture, Ecosystems & Environment. – 2012. – vol. 163(0). – P. 54–60.
doi:http://dx.doi.org/10.1016/j.agee.2012.02.017.
23. Шапар А.Г. Науково-методичні рекомендації щодо поліпшення екологічного стану земель, поруше-
них гірничими роботами (створення техногенних ландшафтних заказників, екологічних коридорів, віднов-
лення екосистем) / [Шапар А.Г., Скрипник О.О., Копач П.І., Сметана С.М. та ін.] – Дніпропетровськ: Моно-
літ, 2007. – 270 с.
24. Шапар А.Г. Створення елементів екомережі на техногенно порушених гірничими роботами територі-
ях Кривбасу / А.Г. Шапар, О.О. Скрипник, П.І. Копач, С.М. Сметана [та ін.] // Наука та інновації. – 2008. – Т.
4., №6. – С. 78-86.
25. Haigh M.J. Surface mining and the environment in Europe / M. J. Haigh // International Journal of Surface
Minining Reclamation. – 1993. – # 7. P. 91 – 104.
26. Vymazal J. Restoration of areas affected by mining / Vymazal J., Sklenicka P. // Ecological Engineering. –
2012. – # 43(0). – P. 1–4. doi:http://dx.doi.org/10.1016/j.ecoleng.2012.02.008
27. Phillips J. The level and nature of sustainability for clusters of abandoned limestone quarries in the southern
Palestinian West Bank / J. Phillips // Applied Geography. – 2012. – # 32(2). – P. 376–392.
doi:http://dx.doi.org/10.1016/j.apgeog.2011.06.009.
28. A quantitative integrated evaluation of sustainable development of mineral resources of a mining city: a case
study of Huangshi, Eastern China / [Yu J., Yao S., Chen R., Zhu K., Yu L.] // Resources Policy. – 2005. – # 30(1). –
P. 7–19. doi:http://dx.doi.org/10.1016/j.resourpol.2004.08.006.
29. Si H. Environmental evaluation for sustainable development of coal mining in Qijiang, Western China / Si
H., Bi H., Li X., Yang C. // International Journal of Coal Geology. – 2010. – #81(3). – P. 163–168.
doi:http://dx.doi.org/10.1016/j.coal.2009.11.004.
http://en.wikipedia.org/wiki/Biomimicry
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
155
30. Vatalis K.I. An overall Index of environmental quality in coal mining areas and Energy Facilities / Vatalis
K.I., Kaliampakos D.C. // Environmental Management. – 2006. – # 38. P. 1031 – 1045.
31. Burger J.A. Sustainable mined land reclamation in the eastern U.S. coalfields: a case for an ecosystem
reclamation / J.A. Burger // Reclamation: Sciences Leading to Success – National Meeting of the American Society
of Mining and Reclamation, Bismarck, ND June 11–16, 2011. – ASMR, 2011. – P. 113–141.
32. Schor H.J. Landforming: An Environmental Approach to Hillside Development, Mine Reclamation and
Watershed Protection / H.J. Schor, D.H. Gray – John Wiley & Sons, Inc. – 2007. – 347 p.
33. Mudd G.M. The Environmental sustainability of mining in Australia: key mega-trends and looming
constraints / G.M. Mudd // Resources Policy. – 2010. – # 35(2). – P. 98–115.
doi:http://dx.doi.org/10.1016/j.resourpol.2009.12.001.
34. Rosgen D.L. Applied River Morphology. Wildland Hydrology / Rosgen D.L. – Pagosa Springs, CO. 1996.
35. Tallamy D.W. Bringing Nature Home: How You Can Sustain Wildlife with Native Plants / Tallamy D.W.,
Darke R. – Portland (Oregon), London, 2009. – 358 p.
36. Pejchar L. Invasive species, ecosystem services and human well-being / Pejchar L., Mooney H.A. //Trends
in Ecology & Evolution. – 2009.– #24(9). – P.497–504. doi: 10.1016/j.tree.2009.03.016.
37. Amtmann M. The chemical relationship between the scent features of goldenrod (Solidago canadensis L.)
flower and its unifloral honey / M. Amtmann // Journal of Food Composition and Analysis. – 2010. – # 23 (1). – P.
122–129. doi: 10.1016/j.jfca.2009.10.001.
38. EPA. Green Acres: Landscaping with Native Plants. – U.S. Environmental Protection Agency, 2010.
Retrieved January 15, 2013 from http://www.epa.gov/greatlakes/greenacres/nativeplants/factsht.html#WhyShould I.
39. Dixon K. The promotive effect of smoke derived from burnt native vegetation on seed germination of
Western Australian plants / Dixon K., Roche S., Pate J. // Oecologia. – 1995. – #101(2). – P. 185–192.
doi:10.1007/BF00317282.
40. Ward S.C. Rehabilitation and revegetation // Best Practice Environmental Management in Mining Series –
Environment Protection Agency. – Canberra, 1995.
41. Brooks D.R. Heavy mineral sands – introduction. – D.R. Mulligan (Ed.), Environmental Management in the
Australian Minerals and Energy Industries – Principles and Practice, University of New South Wales Press, Sydney,
1996. – P. 554–557.
42. Чибрик Т.С. Биологическая рекультивация и мониторинг нарушенных промышленностью земель /
Чибрик Т.С., Глазырина М.А. – Изд-во Урал. ун-та, (2008). – Retrieved from htt-
p://books.google.com/books?id=3dMdRQAACAAJ.
43. Чибрик Т. С.Формирование фитоценозов на нарушенных промышленностью землях: (биологическая
рекультивация) / Чибрик Т.С., Елькин Ю.А. – Свердловск: Изд-во Урал, ун-та, 1991 – 220 с.
44. Tongway D. Landscape Function Analysis: Methods for monitoring and assessing landscapes, with special
reference to minesites and rangelands / Tongway D., Hindley N. – CSIRO Sustainable Ecosystems, Canberra, 2004.
45. Tongway D. Landscape ecology function and management / Tongway D. – 2003. – 145 p.
46. Odum E.P. Ecological Vignettes: Ecological Approaches to Dealing With Human Predicaments / Odum E.P.
– Harwood Academic Publishers, 1998. Retrieved from http://books.google.com/books?id=WjdmEGD5L7gC
47. Blizzard J.L. A framework for sustainable whole systems design / Blizzard J L., Klotz L.E. Design Studies.
– 2012. – 33(5). – 456–479. doi:http://dx.doi.org/10.1016/j.destud.2012.03.001
48. Anastas P.T. Green Chemistry: Theory and Practice / Anastas P.T., Warner J.C. – Oxford University Press:
New York, 1998. – P. 30.
49. Factor ten engineering design principles (No. 2010-10) / [A. Lovins, M. Bendewald, M. Kinsley, L. Bony,
H. Hutchinson, A. Pradhan et al.]. – Rocky Mountain Institute, 2010. Retrieved from htt-
p://www.rmi.org/rmi/Library/2010-10_10xEPrinciples.
50. Tsoulfas G.T. Environmental principles applicable to supply chains design and operation / Tsoulfas G.T.,
Pappis C.P. // Journal of Cleaner Production. – 2006. – # 14(18). – 1593–1602. doi : http: // dx.doi.org / 10.1016 /
j.jclepro.2005.05.021.
51. Методичні вказівки з визначення оптимальних кутів нахилу бортів, укосів уступів і відвалів залізору-
дних та флюсових кар’єрів / [Шапар А.Г., Копач П.І., Романенко В.Н., Якубенко Л.В. та ін.]. – Дніпропет-
ровськ: Моноліт, 2012. – 205 с.
52. EPA. Life Cycle Assessment: Principles and Practice / EPA. – Scientific Applications International
Corporation, National Risk Management Research Laboratory, Office of Research and Development EPA/600/R-
06/060. Cincinnati, Ohio, 2006. Retrieved from http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1000L86.txt.
53. McDonough W. Peer Reviewed: Applying the Principles of Green Engineering to Cradle-to-Cradle Design /
McDonough W., Braungart M., Anastas P. T., Zimmerman J. B. // Environmental Science & Technology. – 2003. –
37(23). – P. 434A–441A. doi:10.1021/es0326322.
54. Gagnon B. Sustainable Development in Engineering: A Review of Principles and Definition of a Conceptual
Framework / Gagnon B., Leduc R., Savard L. // Environmental Engineering Science. –2009.– # 26(10). – P.819–822.
http://books.google.com/books?id=3dMdRQAACAAJ
http://books.google.com/books?id=3dMdRQAACAAJ
http://books.google.com/books?id=WjdmEGD5L7gC
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=0142694X&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.rmi.org%252Frmi%252FLibrary%252F2010-10_10xEPrinciples
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=0142694X&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.rmi.org%252Frmi%252FLibrary%252F2010-10_10xEPrinciples
http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1000L86.txt
ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16
156
55. Mitsch W. Ecological engineering applied to river and wetland restoration / Mitsch W.J., Lefeuvre J.-C.,
Bouchard V. // Ecological Engineering. – 2002. – 18(5). – P. 529–541.
56. Li X. Soil bioengineering and the ecological restoration of riverbanks at the Airport Town, Shanghai, China /
Li X., Zhang L., Zhang Z. // Ecological Engineering. – 2006. – 26(3). – P. 304–314.
57. García-Serna J. New trends for design towards sustainability in chemical engineering: Green engineering /
García-Serna J., Pérez-Barrigón L., Cocero M.J. // Chemical Engineering Journal. – 2007. – 133(1–3). – P. 7–30.
doi:http://dx.doi.org/10.1016/j.cej.2007.02.028.
58. Hooper D.U. The effects of plant composition and diversity on ecosystem processes / D.U. Hooper, P.M.
Vitousek // Science. – 1997. – # 277. – P. 1302–1305.
59. Biodiversity and ecosystem functioning: current knowledge and future challenges / [M. Loreau, S. Naeem,
P. Inchausti et al.] // Science. – 2001. – # 294. – P. 804–808.
60. B.J. Cardinale et al. Effects of biodiversity on the functioning of trophic groups and ecosystems / [B.J.
Cardinale, D.S. Srivastava, J. Emmett Duffy, et al.]// Nature. – 2006. – # 433. – P. 989–992.
61. Solé R.V. Self-Organization in Complex Ecosystems / R.V. Solé, J. Bascompte // Monographs in Population
Biology. – 2006. – vol. 42.
62. Smetana S.M. Environmentally safe and economically friendly multidisciplinary industrial technologies as
innovative approach towards sustainable development / S.M. Smetana, O.M. Smetana // Technologies for Sus-
tainable Development: A Way to Reduce Poverty? 2012 Tech4Dev International Conference 29-31 May, 2012
EPFL, Lausanne, Switzerland. – b_251.
Стаття надійшла до редколегії 16.04. 2013 р. англійською мовою
Стаття рекомендована членом редколегії канд. біол. наук О.О. Скрипником
С.М. СМЕТАНА*, О.М. СМЕТАНА**
*Інститут сталих систем Брук Байера, Технологічний інститут Джорджії,
Атланта, Джорджія, США
**Криворізький ботанічний сад НАН України, м. Кривий Ріг, Україна
ВІДНОВЛЕННЯ ПОУШЕНИХ ГІРНИЧИМИ РОБОТАМИ ЗЕМЕЛЬ ДЛЯ СТАЛОГО
ФУНКЦІОНУВАННЯ З ВИКОРИСТАННЯМ ЛАНДШАФТНОЇ БІОМІМІКРІЇ
У статті наведені основні теоретичні та практичні наробки з напрямку біомімікрії на
ландшафтному рівні при відновлені порушених гірничими роботами земель. Наведено ус-
пішний практичний приклад створення центрів відновлення біорізноманіття на порушених
землях за відкритої розробки корисних копалин.
Ключові слова: ландшафтна біомімікрія, землі порушені гірничими роботами, відновлен-
ня на засадах сталого розвитку.
С.Н. СМЕТАНА*, А.Н. СМЕТАНА**
*Институт устойчивых систем Брук Байера, Технологический институт Джорджии,
Атланта, Джорджия, США
**Криворожский ботанический сад НАН Украины, г.Кривой Рог, Украина
ВОССТАНОВЛЕНИЕ НАРУШЕННЫХ ГОРНЫМИ РАБОТАМИ ЗЕМЕЛЬ
ДЛЯ УСТОЙЧИВОГО ФУНКЦИОНИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ
ЛАНДШАФТНОЙ БИОМИМИКРИИ
В статье приведены основные теоретические и практические наработки в направлении
биомимикрии на ландшафтном уровне при восстановлении нарушенных горными рабо-
тами земель. Приведен успешный практический пример создания центров восстановле-
ния биоразнообразия на нарушенных землях при открытой разработке полезных иско-
паемых.
Ключевые слова: ландшафтная биомимикрия, земли нарушенные горными работами,
восстановление на принципах устойчивого развития.
|