Sustainable mined lands rehabilitation using landscape biomimicry

Article reviews main theoretical and practical issues in the field of biomimicry at landscape level for mined lands rehabilitation. It also includes a successful practical case study of biodiversity development centers creation on open-cut mining lands. У статті наведені основні теоретичні та практи...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Екологія і природокористування
Дата:2013
Автори: Smetana, S.M., Smetana, O.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем природокористування та екології НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/57489
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Sustainable mined lands rehabilitation using landscape biomimicry / S.M. Smetana, O.M. Smetana // Екологія і природокористування. — 2013. — Вип. 16. — С. 146-156. — Бібліогр.: 62 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-57489
record_format dspace
spelling Smetana, S.M.
Smetana, O.M.
2014-03-10T11:55:37Z
2014-03-10T11:55:37Z
2013
Sustainable mined lands rehabilitation using landscape biomimicry / S.M. Smetana, O.M. Smetana // Екологія і природокористування. — 2013. — Вип. 16. — С. 146-156. — Бібліогр.: 62 назв. — англ.
XXXX-0010
https://nasplib.isofts.kiev.ua/handle/123456789/57489
504.4
Article reviews main theoretical and practical issues in the field of biomimicry at landscape level for mined lands rehabilitation. It also includes a successful practical case study of biodiversity development centers creation on open-cut mining lands.
У статті наведені основні теоретичні та практичні наробки з напрямку біомімікрії на ландшафтному рівні при відновлені порушених гірничими роботами земель. Наведено успішний практичний приклад створення центрів відновлення біорізноманіття на порушених землях за відкритої розробки корисних копалин.
В статье приведены основные теоретические и практические наработки в направлении биомимикрии на ландшафтном уровне при восстановлении нарушенных горными работами земель. Приведен успешный практический пример создания центров восстановления биоразнообразия на нарушенных землях при открытой разработке полезных ископаемых.
en
Інститут проблем природокористування та екології НАН України
Екологія і природокористування
Особливості функціонування великих гео-техно-екосистем
Sustainable mined lands rehabilitation using landscape biomimicry
Відновлення порушених гірничими роботами земель для сталого функціонування з використанням ландшафтної біомімікрії
Восстановление нарушенных горными работами земель для устойчивого функционирования с использованием ландшафтной биомимикрии
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Sustainable mined lands rehabilitation using landscape biomimicry
spellingShingle Sustainable mined lands rehabilitation using landscape biomimicry
Smetana, S.M.
Smetana, O.M.
Особливості функціонування великих гео-техно-екосистем
title_short Sustainable mined lands rehabilitation using landscape biomimicry
title_full Sustainable mined lands rehabilitation using landscape biomimicry
title_fullStr Sustainable mined lands rehabilitation using landscape biomimicry
title_full_unstemmed Sustainable mined lands rehabilitation using landscape biomimicry
title_sort sustainable mined lands rehabilitation using landscape biomimicry
author Smetana, S.M.
Smetana, O.M.
author_facet Smetana, S.M.
Smetana, O.M.
topic Особливості функціонування великих гео-техно-екосистем
topic_facet Особливості функціонування великих гео-техно-екосистем
publishDate 2013
language English
container_title Екологія і природокористування
publisher Інститут проблем природокористування та екології НАН України
format Article
title_alt Відновлення порушених гірничими роботами земель для сталого функціонування з використанням ландшафтної біомімікрії
Восстановление нарушенных горными работами земель для устойчивого функционирования с использованием ландшафтной биомимикрии
description Article reviews main theoretical and practical issues in the field of biomimicry at landscape level for mined lands rehabilitation. It also includes a successful practical case study of biodiversity development centers creation on open-cut mining lands. У статті наведені основні теоретичні та практичні наробки з напрямку біомімікрії на ландшафтному рівні при відновлені порушених гірничими роботами земель. Наведено успішний практичний приклад створення центрів відновлення біорізноманіття на порушених землях за відкритої розробки корисних копалин. В статье приведены основные теоретические и практические наработки в направлении биомимикрии на ландшафтном уровне при восстановлении нарушенных горными работами земель. Приведен успешный практический пример создания центров восстановления биоразнообразия на нарушенных землях при открытой разработке полезных ископаемых.
issn XXXX-0010
url https://nasplib.isofts.kiev.ua/handle/123456789/57489
citation_txt Sustainable mined lands rehabilitation using landscape biomimicry / S.M. Smetana, O.M. Smetana // Екологія і природокористування. — 2013. — Вип. 16. — С. 146-156. — Бібліогр.: 62 назв. — англ.
work_keys_str_mv AT smetanasm sustainableminedlandsrehabilitationusinglandscapebiomimicry
AT smetanaom sustainableminedlandsrehabilitationusinglandscapebiomimicry
AT smetanasm vídnovlennâporušenihgírničimirobotamizemelʹdlâstalogofunkcíonuvannâzvikoristannâmlandšaftnoíbíomímíkríí
AT smetanaom vídnovlennâporušenihgírničimirobotamizemelʹdlâstalogofunkcíonuvannâzvikoristannâmlandšaftnoíbíomímíkríí
AT smetanasm vosstanovlenienarušennyhgornymirabotamizemelʹdlâustoičivogofunkcionirovaniâsispolʹzovaniemlandšaftnoibiomimikrii
AT smetanaom vosstanovlenienarušennyhgornymirabotamizemelʹdlâustoičivogofunkcionirovaniâsispolʹzovaniemlandšaftnoibiomimikrii
first_indexed 2025-11-27T06:29:14Z
last_indexed 2025-11-27T06:29:14Z
_version_ 1850805020508815360
fulltext ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 146 УДК 504.4 S.M. SMETANA, Brook Byers Institute of Sustainable Systems, Georgia Institute of Tech- nology, Atlanta, GA, USA, Ph.D. in Environmental Safety (Technical), Visiting Fulbright Re- searcher O.M. SMETANA, Kryvyi Rih Botanical Garden of NASU, Kryvyi Rih, Ukraine, Ph.D. in Biology (Ecology), Head of Industrial Landscape Optimization Department SUSTAINABLE MINED LANDS REHABILITATION USING LANDSCAPE BIOMIMICRY Article reviews main theoretical and practical issues in the field of biomimicry at landscape level for mined lands rehabilitation. It also includes a successful practical case study of biodiver- sity development centers creation on open-cut mining lands. Keywords: landscape biomimicry, mined lands, sustainable rehabilitation Problem Statement The world consumption of natural resources increases with exponential growth of population [1]. The scarcest resources are minerals and fos- sil fuels [2]. Although the problem of mineral resources scarcity is not in the depletion (the amount of the chemical elements is constant in the environment) but rather in the crisis of the technological qualities to supply sufficient amo- unt of the resources for the human needs [3, 4]. Today mining explores deposits with the lowest ever concentration of the mined elements and the technologies itself become more expensive [4, 5]. Thus, intense mining causes the destruction of large land areas. The rehabilitation techniques, on the other hand, have not been as actively and intensively developed. The development of very expensive and res- ource intense rehabilitation technologies has been a very popular trend in mined lands reh- abilitation. It is caused by the idea that the des- tructed lands should be returned to the env- ironment and society in the natural condition (to the condition equal to that for premining state). This concept misled scientist and engineers towards the development of intensive and expensive technologies [6]. They often underestimate the value of self rehabilitation, succession plant community potential, and exceptional conditions created. Moreover, often newly self established ecosystems are destroyed to create “a natural system analogy” [7]. More than that there is nothing sustainable in such resource consuming technologies especially if they are not successful. It is possible to copy techniques used by the nature for the mined lands rehabilitation. We claim that it is should be done at the landscape level evolving all the lower nature organization levels. Only complex rehabilitation approach with multiple levels of nature imitation, future use, and functions could result in sustainable mining lands rehabilitation technologies. Literature Review World population exponential growth, dom- inating urbanization [8], increased need in nat- ural resources and doubled the world mining production for the last 20-30 years [9, 10]. Min- ing production is based on lands transformation and, therefore, caused exponential rates of mined lands destruction (figure 1-3). The data available from various resources (Alcoa Company, World Gold Council) confirms that current rate of mined lands rehabilitation is © Smetana S.M., Smetana O.M., 2013 stable the level of 0,1 – 1% of the destructed area annually. Such data allows making an as- sumption, that with current rates of land reha- bilitation we will need more than 100 years to restore all the mined lands (at this moment). And many more destructions are foreseen in the future. The reasons of slow rehabilitation rates are in the lack of appropriate technologies develop- ment, low efficiency and high price of old tech- nologies [11], and natural causes [12]. However, the technologies which include the use of native ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 147 Figure 1 – World steel production trends and projections [9] plants in the mining lands rehabilitation [12], natural succession changes [6, 13-15], self resto- ration in general [7] are well described in the literature and in some cases used in the field. Mining destructed landscape rehabilitation proc- ess consists of 10 sequential steps [16-17]: 1) Site characterization; 2) Planning and engineering; 3) Material management; 4) Topographic reconstruction; 5) Replacement of topsoil or soil substitute; 6) Surface manipulation; 7) Addition of soil amendments; 8) Revegetation; 9) Irrigation, if needed; 10) Site monitoring and maintenance. Such standard approach require a lot of fi- nancial, time and labor resources and have a large environmental impact [18].The cases of rehabilitation failure supply additional doubts about the sustainability of the technologies [19]. The problem in mentioned concept is con- nected with the means of nature imitation. Reha- bilitation techniques involve intense earth mass movements, layering, irrigation, topographic reconstruction etc. Natural processes work with fewer inputs and with much higher effects [20]. Such conclusions come from discipline known since 1960 and called bionics, but it became more intensively used and researched since the publication of the book by Janine Benyus in 1997. She is the one of those who tried to sum- mary all the approaches of the nature imitation techniques in fairly simple but effective princi- ples. Biomimicry is the examination of nature, its models, systems, processes, and elements to emulate or take inspiration from in order to solve human problems [21]. It is the most successful in the fields of engineering, design and architecture. There are quite a few examples where biomim- icry is used at the landscape level. There could be multiple reasons for that and we are not going to discuss them in this paper. And it is interesting that mined lands rehabilitation should be a bright example of nature imitation at multiple levels, but it is not. Bradshaw mentioned that it hap- pened due to the technical issues dominance in the restoration projects [7]. Others claimed that anthropocentric attitude caused the development of agricultural restoration. Modern trend today is ecosystem restoration [11, 22] – we attempt cre- ate ecosystems on mined areas and use their eco- systems services for future generations. On our mind the most sustainable and most nature ori- ented way of sustainable restoration is mined lands conversion into conserved areas (reserva- tions, parks, open areas). It has been done in many areas via cooperation of scientists and in- dustrial engineers [23, 24]. In this paper we present a system approach towards nature imitation in mining destructed territories restoration. It includes the collocation of well known and original mined lands restora- tion methods in the complex nature imitation systems of landscape restoration. ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 148 Figure 2 – Historical trends in production of iron ore and crude steel in the major producing countries of the world [9] ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 149 Figure 3 – Cumulative world production of iron (Fe) ore, gold (Au), copper (Cu), and tin (Sn) [10] Sustainability in land reclamation Relief construction. Mining lands rehabilita- tion is considered to be a pathway to sustainabil- ity of the area, as if its aim is to meet main goal of sustainability – provide land resources for future generations. But at the same time the needs of ecosystems and natural environment are often ignored. Mining industry excavate or pump mineral resources and fossil fuel, destruct a lot of lands, then use extra resources for restoration, which will be useful for human needs – such anthropogenic approach is often called sustain- able in the industry and in the science literature [25-26]. On the other hand the sustainable mining and rehabilitation techniques should be connected with analysis of resources use, human health and ecosystem state. Recently there have been im- provements in the development of mining sus- tainable sound methods and practices. Yu et al., Si et al., Vatalis and Kaliampakos have devel- oped mining specific environmental impact as- sessment methodologies and techniques [27-30]. Members of the American Society of Mining and Reclamation developed an ecosystem recla- mation approach (ERA), which is oriented mainly on geomorphic landscape design, which mimics stable mountain slopes as they present in nature. Such approach is claimed to be cost- effective, attractive and resistant to surface ero- sion and mass movements [31]. Their geomor- phic design mimics natural landscapes the way they were in pre mining state. The main idea of such approach is to achieve functional and aes- thetic nature-like characteristics by mimicking nature landscape drainage patterns and relief forms [32]. At the same time such approach does not include the change of mining field regula- tions and “blind” use of the geomorphic ap- proach will result in construction of new native- like landforms and reclamation cost increase af- ter the main excavation processes are over [33]. Further analysis of the existing techniques con- cludes that ERA includes specific techniques as natural channel design (stream reconstruction), region and site specific native soils and plants adaptation [31]. Native plants use. The definition of “native” plants and therefore “alien” or “invasive” plants is quite unclear in modern literature. D. Tallamy and R. Darke in their book represent an opinion that if the plant has been for a long time in the studied area “it could be considered as a native regardless of its evolutionary origin”. In order to clarify the definition they used “coevolving” pri- nciple, which defines native plants as those whi- ch established connections with other elements of the ecosystem [35]. It is obvious then that newly installed invasive plants are not the part of historical ecosystem because they do not have established interactions with living organisms’ communities. At the same time newly intruded plant species sometimes evolve into ecosystem ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 150 interactions very fast. It happens in the cases when an invasive plant is a relative to native pla- nt species and therefore surrounding community is “preadapted” to the interactions with such spe- cies [35]. Another example is when invasive pla- nts are honey plants and therefore they attract bees and other insects and interact with them in short period of time [36, 37]. We tend to accept the definition of EPA which defines native plants or indigenous plants as those evolved over thou- sands of years in a particular region. It is allowed them to be adapted to the geography, hydrology, climate and other species in the region [38]. Despite the popularity the use of native plants in industrial lands rehabilitation is quite limited due to the unusual for regions local environ- mental conditions. Geographically separated ar- eas, with different than local conditions, become “desert islands” for local ecosystems. One of the limitations for ecosystem developments on post- inductrial areas is the lack of the seed banks of appropriate plant species. Using seeding tech- niques of appropriate adapted plant species was the most successful introduction techniques, which has advantages of easy handling and ready availability, as well as ensuring a wide genetic base [13]. However, succession changes, which lead to the native ecosystem establishment, could be started with non-native plants. Such pro- native approach was proven to be successful on mining areas of Australia [12]. Mining rehabilitation was successful in West- ern Australia done by Alcoa on post bauxite min- ing areas. The company practitioners used a complex of techniques to make the technology successful: reconstruction of the soil root zone, special plant seeding technique and post- installation monitoring. Immediate soil replace- ment, seeding with mixture of 60 native species with increased germination via smoke together with fauna corridors and habitat construction insure the success of the technology [12]. In certain areas of Australia the rehabilitation was so successful that post-mining areas were included in the network of national parks and nature reserves. They are especially valuable owing to wetlands creation options. There are 91 sites reported, which perform nature preservation functions [12]. It was possible on the mineral sands mining areas with the use of rehabilitation principles set [12, 39-40]: - рre-mining surveys of soils, vegetation, fauna and heritage; - seed collection of key species from the local to mine lands to conserve genetic material with attention being paid to the seed quality and stor- age conditions; - recovery of topsoil immediately prior to mining, incorporating biomass of shrubs and groundcover or ash from burning of trees; - reconstruction of landform immediately fol- lowing mining to re-establish topographic pat- terns, with particular emphasis on drainage; - early replacement of topsoil to minimize its storage time; - surface stabilization to enable establishment of native species, many of which have small see- dlings and are slow to establish; - application of moderate doses of mixed fer- tilizer to aid early vegetation establishment; - direct seeding of native species as the most biologically and economically efficient means of regeneration (up to 100 species were included in the mix); - enhancement planting of nursery seedlings for species that are difficult to propagate with field techniques (breaking of dormancy of recal- citrant species with smoke); - monitoring of ecosystem development, with techniques ranging from visual inspection to computerized sampling. Scientists from Commonwealth of Inde- pendent States have completed enormous amounts of research in coal mining lands reha- bilitation [42-43]. Native plants use following the necessary detoxication of the substrates was proposed among other rehabilitation techniques. Australian practitioners moved towards estab- lishment of self-sustaining native woodlands (Eucalyptus) in areas of sub-humid, subtropical climate. Their approach included alternative landforms design (ponds reshaping for runoff accumulation, moderate external slopes with sediment traps at the toes), slopes topsoil strips replacement and aerial seeding of a mix of grass, shrub and tree species [12]. Landscape level approach. In 1997 David Tongway with the group of scientists from CSI- RO Division of Wildlife and Ecology created an Ecosystem Function Analysis for mined area as a response on the request of the Australian Centre for Minesite Rehabilitation Research (now the Australian Centre for Mining Environ- mental Research). It was based on 20 years ex- perience of rangelands studies, and data from ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 151 bauxite, mineral sands, coal, gold, uranium, nickel and iron ore mines with various climates. Ecosystem Function Analysis (EFA) is con- sisted of 3 main modules for the evaluation of mined landscape [12, 44, 45]: 1) Landscape function analysis; 2) Vegetation dynamics; 3) Habitat complexity. Landscape function analysis involves two steps: landscape stratification along transects oriented in the dominant direction of resource mobility and measuring zones in the landscape which either lose or accumulate mobile re- sources; soil surface condition characterization by assessment into various classes of 10 features at each of the landscape zone types along a tran- sect. Vegetation dynamics module is assessed by using measures of species composition, species similarity to an analogue “natural” site, presence of “shade and shelter” species and target species development, important to the ecosystem self- sustainability. Habitat complexity index esti- mated for each rehabilitated and analogue site is based on five features, visual canopy cover, shr- ub cover, ground vegetation cover, the amount of litter, fallen logs and rocks, and free water avail- ability. The summary of the scores for each fea- ture gives the overall comparable habitat com- plexity score. The advantages of EFA are in the indices comparability of rehabilitate, mined and natural areas as for their landscape function, and in quick and simple conductivity [12]. Biomimicry and bioengineering. Dr. Eugene Odum wrote that “in nature there are a lot of an- swers about what we should be doing in society. Nature has been here longer than humans and has survived a lot of catastrophes” [46]. The main idea of biomimicry is the imitation of liv- ing organisms design, materials and processes in industrial technologies. Such approach should minimize toxicity, celebrate diversity, curb de- mand and make connections [20]. The main methods of biomimicry use are: seek simple so- lutions, value place, move resource impact to- ward zero, rethink waste, use renewable inputs and use non-hazardous materials [47]. There could be multiple applications of the design principles in mined lands rehabilitation. Seeking simple solutions means use less tec- hnological approach, fewer materials, fewer elements for completion of the same function. It might be done through the “passive design” when passive natural systems are included [48- 50]. It results in reduction of costs, wastes and resources use. For example, in mining areas re- habilitation, a more simple design would be placement of nutritious for plants and animals matters on the top places of the slopes for their natural distribution along the slopes and water flows versus applying layers of soil-like materi- als. It is a few times cheaper, simple to use and will result in matter distribution in the places which perform a bigger landscape and ecosystem function. Valuing places is especially important for the rehabilitation of mined areas, taking into account their position in the cities and enormous land usage. In the mining field it is common today to search for the possibilities of steep slopes explo- ration in super deep quarries [51]. In rehabilita- tion it is also important to preserve surrounding areas from destruction via restoration of steeper slopes [23]. The value of the place might be es- timated also in the destructed landscape as well. As it is mentioned above, mined areas could be used for native areas preservations, museums, or reserved for other uses. Sustainability requires the resource impact of the humanity to be shifted towards zero. It is possible to do through the maximization of the resource efficiency and resource demand mini- mization [48-50]. It could be done through the use of life cycle analysis of the resources use in technologies [52]. It also implies the use of re- newable resources in mining rehabilitation. For example, instead of using the topsoil, which is considered as non-renewable resource in Ukr- aine, should be used wastewater sediments, pla- nts residues, wooden chips, straw etc. The need to avoid the hazardous materials is still present. Rethinking waste is the most essential trait in the sustainability, which means that if all the waste could be sources for other processes – than we would create an analogue of natural system. Designers promote the use of “three R principle”: reduce, reuse and recycle. Up-cycle is also a necessary option taking into account the amount of nowadays wastes [53]. In reha- bilitation techniques the wastes of rock material could serve as a building material or as pro- longed fertilizer. High waste banks might be suitable for wind generators and solar panels. Water harvesting from mined areas for indus- trial, residential and agricultural use could pre- vent leakages and supply increased demand in water. The need to extract multiple recourses from single mining action is also of a high pri- ority. ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 152 Renewable inputs require the substitution of resources, which have a long period of regen- eration. This way the needs in resources of modern generation will not be set as a higher priority than needs of future generations [54]. We have already written of the need to substi- tute the soil layers with more easily regenerated materials. The implementation of the principle focuses on the use of passive methods of reha- bilitation versus active technical oil-based re- cultivation. Among passive methods there are geochemical (barriers, flows), bioengineering (various biological self covering materials), biodistribution and others. For example, soil bioengineering, which uses living vegetation and other materials, is successfully used to sta- bilize slopes, control erosion and enhance the functioning of ecosystems. Ecological (bio) engineering is often much cheaper and uses less resources than traditional engineering ap- proaches [55-56]. Non-hazardous materials inputs rely on their safety for human, environmental and economic health [47, 57]. This obvious principle bans the use of synthetic covers for the rehabilitated ar- eas, chemical pesticides and fertilizers. It also refers to the need of rock waste environmental control (radioactive, chemical and biological) and risk of various substrates application (waste sludge, plant residues, food production wastes). Sustainable rehabilitation system construc- tion – a case study. Human influence on natural ecosystems is diverse and dynamic. It involves extensive inputs of energy, labor and technolo- gies, which in combination lead to the dynamic environmental destructions. Their rehabilitation requires additional energy, resources and labor. Natural ecosystems nevertheless are self- restored through some time via succession se- rial changes. Using this trait we propose mobile biodiversity centers creation to activate succes- sion changes and biodiversity development within destructed environments. The main idea of biodiversity distribution centers creation has been developed during natural and industrial ecosystems research done in 1996-2012. The biodiversity analysis con- firms that biodiversity is linked to the develop- ment of the whole community and not just separate organisms’ distribution. The statement is supported by D. Hooper, P. Vitousek, M. Loreau and others, who indicated biodiversity significance for ecosystems development and their functioning [58-60]. The creation of whole functioning climax ecosystem community is problematic to accomplish due to its common extensive sizes [61]. And even if it would be possible changing environment should destroy such ecosystem due to human activities within certain time frame. That’s why we developed the idea of mobile communities able to move away from the influence within the certain time and place frame. However is possible to trans- fer the vital part of a terrestrial ecosystem – its core plant community. This way we may create high biodiversity ecosystems with mobile bio- diversity development cores (BDC). The proposed principle of mobile BDC crea- tion was tested on mining destructed lands. Sur- face strip mining technology involves continuous moving of excavation front together with recla- mation areas following it in a distance. There is only a narrow strip of land suitable for biodiver- sity development within the quarry, which would reach the final open pit. Therefore we set 4 ex- perimental cores for biodiversity centers devel- opment within the confines of international competition “Quarry Life Award” in 2012. They are constructed with two interchangeable con- tainer types (permeable bags, plastic boxes with holes) and composed with rare 11 plants species in monoliths of soil with associated mezofauna and microbiota. The surrounding area was en- riched with seeds of the steppe plants (according to the climate zone). The results showed most plants survival rate of 90-94 %. Even though some species died (Caragana scyhtica (Kom.) Pojark; Chamaecytisus graniticus (Rehman) Rothm.), others started distribution in surround- ing areas (Stipa capillata L., Stipa lessingiana Trin. Et Rupr., Vinca herbacea Waldst. ex Kit.). The implementation of the project allowed us to determine main mobile BDC chracteris- tics. Organisms’ development in the BDC and successful distribution depend on the successful placement within litho-geochemical flows of quarry [62]. Mobile BDC should be assembled with interchangeable permeable containers ar- ranged according to the desired use of hydro and gravitational litho-geochemical flows (fig- ure 4). The successful development of plants in containers also depends on presence of ‘plant- soil-microbiota’ monoliths as a supporting envi- ronment. Mobile BDC should consist of peren- nial plants and other organisms appropriate for the specific climate (best taken locally) and substrate conditions. This way, mobile BDC could be installed in the substrate at any place within the quarry and start biodiversity devel- opment. After 2-3 years the BDC could be moved to another place to start a new biodiver- sity center (figure 4). ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 153 Figure 4 – BDC placement and spatial development dynamics within a quarry Such BDC have both ecological and techno- logical advantages. They enrich human destruc- ted areas with native biodiversity. Technological benefits are in mobility, possible BDC elements reconstruction and multiple times use. Further development of BDC will result in industrial areas biodiversity development technology crea- tion, which could be used on mining, agricultural and other human destructed lands. Conclusions 1. Sustainable development of mined land- scapes includes their sustainable rehabilitation. Current existing traditional technologies are ex- pensive, environmentally harmful and dangerous for human health taking into consideration high amounts of resources use through the life cycle assessment. 2. Sustainable rehabilitation includes nature imitation approach with its application in soil bioengineering, relief construction and landscape function analysis implementation. 3. The rehabilitation of open cut mined lands could be realized at landscape level with multi- ple approaches implementation, for example through the biodiversity development centers construction. References 1. Meadows D.H. Beyond the limits: global collapse or a sustainable future / Meadows D.H., Meadows D.L., Randers J. – 1992 – 300 p. 2. Craig J. R. Resources of the earth: origin, use, and environmental impact / Craig J.R., Vaughan D.J., Skinner B.J. – 1996 – 472 p. 3. Методические подходы к выбору стратегии устойчивого развития территории / А.Г. Шапарь, С.З. Полищук и др.: Под научной редакцией проф., д-ра техн. наук А.Г. Шапаря – Днепропетровск: Ин-т проблем природопользования и экологии НАН Украины,1996. – Том 1 – 162 с. Том 2 – 170 с. 4. Формирование и разработка техногенных месторождений и марганцевых руд / [Шапарь А.Г., Вилкул А.Ю., Копач П.І., Якубенко Л.В.] – Днепропетровск: Монолит, 2012. – 140с. 5. Owens B. Mining: Extreme prospects / B. Owens // Nature. – 2013. – 495(7440), S4–S6. Retrieved from http://dx.doi.org/10.1038/495S4a 6. Technical reclamation and spontaneous succession produce different water habitats: a case study from Czech post-mining sites / Doleˇzalova J., Vojar J., Smolova D., Solsky´ M., Kopecky´ O. // Ecological Engineering. – 2012. – # 43. – P 5–12. 7. Bradshaw A. Restoration of mined lands – using natural processes / A. Bradshaw // Ecological Engineering. – 1997. – # 8(4). – 255–269. doi:http://dx.doi.org/10.1016/S0925-8574(97)00022-0 http://dx.doi.org/10.1038/495S4a ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 154 8. United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects, the 2011 Revision, New York. – 2012. 9. Yellishetty M. Iron ore and steel production trends and material flows in the world: Is this really sustainable? / Yellishetty M., Ranjith P. G., Tharumarajah A. // Resources, Conservation and Recycling. – 2010. – #54(12). – P. 1084–1094. doi:http://dx.doi.org/10.1016/j.resconrec.2010.03.003 10. Wellmer F.-W. World natural resources policy – Focussing on mineral resources / Wellmer F.-W., Becker- Platen J.D. // Our fragile world – Challenges and opportunities for sustainable development: Oxford, U.K., Enc- yclopedia of Life Support Systems Publishers Co. Ltd. – 2001. – v. 1. – P. 183–207. 11. Doley D. Examining the Australian context for post-mined land rehabilitation: Reconciling a paradigm for the development of natural and novel ecosystems among post-disturbance landscapes / Doley D., Audet P., Mul- ligan D. R. // Agriculture, Ecosystems & Environment. – 2012. – vol. 163(0). – P. 85–93. doi:http://dx.doi.org/10.1016/j.agee.2012.04.022. 12. Bell L.C. Establishment of native ecosystems after mining – Australian experience across diverse biogeographic zones / L. C. Bell // Ecological Engineering. – 2001. – vol. 17(2-3). – P. 179–186. doi:10.1016/S0925-8574(00)00157-9. 13. Ash H.J. The introduction of native plant species on industrial waste heaps: a test of immigration and other factors affecting primary succession / H.J. Ash, R.P. Gemmell, A.D. Bradshaw // Journal of Applied Ecology. – 1994. – # 31. – P. 74-84. 14. Prach K. Using spontaneous succession for restoration of human disturbed habitats: experience from Central Europe / Prach K., Pyˇsek P. // Ecological Engineering. – 2001. – P. 17, 55–62. 15. Tropek R. Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps / Tropek R., Kadlec T., Hejda M., Kocarek P., Skuhrovec J., Malenovsky I., Vodka S., Spitzer L., Banar P., Konvicka M. // Ecological Engineering. – 2012. – # 43. – P. 13–18. 16. Toy T.J. Topographic reconstruction: a geomorphic approach / Toy T.J., Chuse W.R. // Ecological Engineering. – 2005. – # 24. – P. 29–35. 17. Menegaki M.E. Evaluating mining landscape: A step forward / Menegaki M.E., Kaliampakos D.C. // Ecological Engineering. – 2012. – #43(0). – P. 26–33. doi:http://dx.doi.org/10.1016/j.ecoleng.2011.02.011. 18. Durucan S. Mining life cycle modelling: a cradle-to-gate approach to environmental management in the minerals industry / Durucan S., Korre A., & Munoz-Melendez G. // Journal of Cleaner Production. – 2006. – vol. 14(12–13). – P. 1057–1070. doi:http://dx.doi.org/10.1016/j.jclepro.2004.12.021 19. Josa R. Opencast mine restoration in a Mediterranean semi-arid environment: Failure of some common practices / Josa R., Jorba M., & Vallejo V.R. // Ecological Engineering. – 2012. – # 42. – P. 183–191. doi:10.1016/j.ecoleng.2012.02.020. 20. Benyus J.M. Biomimicry: innovations inspired by nature / J.M. Benyus – HarperCollins, 2009. – 320 p. 21. Biomimicry definition. Retrieved from: http://en.wikipedia.org/wiki/Biomimicry 22. Williams E.R. Using insect diversity for determining land restoration development: Examining the influence of grazing history on ant assemblages in rehabilitated pasture / Williams E.R., Mulligan D.R., Erskine P.D., & Plo- wman K.P. // Agriculture, Ecosystems & Environment. – 2012. – vol. 163(0). – P. 54–60. doi:http://dx.doi.org/10.1016/j.agee.2012.02.017. 23. Шапар А.Г. Науково-методичні рекомендації щодо поліпшення екологічного стану земель, поруше- них гірничими роботами (створення техногенних ландшафтних заказників, екологічних коридорів, віднов- лення екосистем) / [Шапар А.Г., Скрипник О.О., Копач П.І., Сметана С.М. та ін.] – Дніпропетровськ: Моно- літ, 2007. – 270 с. 24. Шапар А.Г. Створення елементів екомережі на техногенно порушених гірничими роботами територі- ях Кривбасу / А.Г. Шапар, О.О. Скрипник, П.І. Копач, С.М. Сметана [та ін.] // Наука та інновації. – 2008. – Т. 4., №6. – С. 78-86. 25. Haigh M.J. Surface mining and the environment in Europe / M. J. Haigh // International Journal of Surface Minining Reclamation. – 1993. – # 7. P. 91 – 104. 26. Vymazal J. Restoration of areas affected by mining / Vymazal J., Sklenicka P. // Ecological Engineering. – 2012. – # 43(0). – P. 1–4. doi:http://dx.doi.org/10.1016/j.ecoleng.2012.02.008 27. Phillips J. The level and nature of sustainability for clusters of abandoned limestone quarries in the southern Palestinian West Bank / J. Phillips // Applied Geography. – 2012. – # 32(2). – P. 376–392. doi:http://dx.doi.org/10.1016/j.apgeog.2011.06.009. 28. A quantitative integrated evaluation of sustainable development of mineral resources of a mining city: a case study of Huangshi, Eastern China / [Yu J., Yao S., Chen R., Zhu K., Yu L.] // Resources Policy. – 2005. – # 30(1). – P. 7–19. doi:http://dx.doi.org/10.1016/j.resourpol.2004.08.006. 29. Si H. Environmental evaluation for sustainable development of coal mining in Qijiang, Western China / Si H., Bi H., Li X., Yang C. // International Journal of Coal Geology. – 2010. – #81(3). – P. 163–168. doi:http://dx.doi.org/10.1016/j.coal.2009.11.004. http://en.wikipedia.org/wiki/Biomimicry ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 155 30. Vatalis K.I. An overall Index of environmental quality in coal mining areas and Energy Facilities / Vatalis K.I., Kaliampakos D.C. // Environmental Management. – 2006. – # 38. P. 1031 – 1045. 31. Burger J.A. Sustainable mined land reclamation in the eastern U.S. coalfields: a case for an ecosystem reclamation / J.A. Burger // Reclamation: Sciences Leading to Success – National Meeting of the American Society of Mining and Reclamation, Bismarck, ND June 11–16, 2011. – ASMR, 2011. – P. 113–141. 32. Schor H.J. Landforming: An Environmental Approach to Hillside Development, Mine Reclamation and Watershed Protection / H.J. Schor, D.H. Gray – John Wiley & Sons, Inc. – 2007. – 347 p. 33. Mudd G.M. The Environmental sustainability of mining in Australia: key mega-trends and looming constraints / G.M. Mudd // Resources Policy. – 2010. – # 35(2). – P. 98–115. doi:http://dx.doi.org/10.1016/j.resourpol.2009.12.001. 34. Rosgen D.L. Applied River Morphology. Wildland Hydrology / Rosgen D.L. – Pagosa Springs, CO. 1996. 35. Tallamy D.W. Bringing Nature Home: How You Can Sustain Wildlife with Native Plants / Tallamy D.W., Darke R. – Portland (Oregon), London, 2009. – 358 p. 36. Pejchar L. Invasive species, ecosystem services and human well-being / Pejchar L., Mooney H.A. //Trends in Ecology & Evolution. – 2009.– #24(9). – P.497–504. doi: 10.1016/j.tree.2009.03.016. 37. Amtmann M. The chemical relationship between the scent features of goldenrod (Solidago canadensis L.) flower and its unifloral honey / M. Amtmann // Journal of Food Composition and Analysis. – 2010. – # 23 (1). – P. 122–129. doi: 10.1016/j.jfca.2009.10.001. 38. EPA. Green Acres: Landscaping with Native Plants. – U.S. Environmental Protection Agency, 2010. Retrieved January 15, 2013 from http://www.epa.gov/greatlakes/greenacres/nativeplants/factsht.html#WhyShould I. 39. Dixon K. The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants / Dixon K., Roche S., Pate J. // Oecologia. – 1995. – #101(2). – P. 185–192. doi:10.1007/BF00317282. 40. Ward S.C. Rehabilitation and revegetation // Best Practice Environmental Management in Mining Series – Environment Protection Agency. – Canberra, 1995. 41. Brooks D.R. Heavy mineral sands – introduction. – D.R. Mulligan (Ed.), Environmental Management in the Australian Minerals and Energy Industries – Principles and Practice, University of New South Wales Press, Sydney, 1996. – P. 554–557. 42. Чибрик Т.С. Биологическая рекультивация и мониторинг нарушенных промышленностью земель / Чибрик Т.С., Глазырина М.А. – Изд-во Урал. ун-та, (2008). – Retrieved from htt- p://books.google.com/books?id=3dMdRQAACAAJ. 43. Чибрик Т. С.Формирование фитоценозов на нарушенных промышленностью землях: (биологическая рекультивация) / Чибрик Т.С., Елькин Ю.А. – Свердловск: Изд-во Урал, ун-та, 1991 – 220 с. 44. Tongway D. Landscape Function Analysis: Methods for monitoring and assessing landscapes, with special reference to minesites and rangelands / Tongway D., Hindley N. – CSIRO Sustainable Ecosystems, Canberra, 2004. 45. Tongway D. Landscape ecology function and management / Tongway D. – 2003. – 145 p. 46. Odum E.P. Ecological Vignettes: Ecological Approaches to Dealing With Human Predicaments / Odum E.P. – Harwood Academic Publishers, 1998. Retrieved from http://books.google.com/books?id=WjdmEGD5L7gC 47. Blizzard J.L. A framework for sustainable whole systems design / Blizzard J L., Klotz L.E. Design Studies. – 2012. – 33(5). – 456–479. doi:http://dx.doi.org/10.1016/j.destud.2012.03.001 48. Anastas P.T. Green Chemistry: Theory and Practice / Anastas P.T., Warner J.C. – Oxford University Press: New York, 1998. – P. 30. 49. Factor ten engineering design principles (No. 2010-10) / [A. Lovins, M. Bendewald, M. Kinsley, L. Bony, H. Hutchinson, A. Pradhan et al.]. – Rocky Mountain Institute, 2010. Retrieved from htt- p://www.rmi.org/rmi/Library/2010-10_10xEPrinciples. 50. Tsoulfas G.T. Environmental principles applicable to supply chains design and operation / Tsoulfas G.T., Pappis C.P. // Journal of Cleaner Production. – 2006. – # 14(18). – 1593–1602. doi : http: // dx.doi.org / 10.1016 / j.jclepro.2005.05.021. 51. Методичні вказівки з визначення оптимальних кутів нахилу бортів, укосів уступів і відвалів залізору- дних та флюсових кар’єрів / [Шапар А.Г., Копач П.І., Романенко В.Н., Якубенко Л.В. та ін.]. – Дніпропет- ровськ: Моноліт, 2012. – 205 с. 52. EPA. Life Cycle Assessment: Principles and Practice / EPA. – Scientific Applications International Corporation, National Risk Management Research Laboratory, Office of Research and Development EPA/600/R- 06/060. Cincinnati, Ohio, 2006. Retrieved from http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1000L86.txt. 53. McDonough W. Peer Reviewed: Applying the Principles of Green Engineering to Cradle-to-Cradle Design / McDonough W., Braungart M., Anastas P. T., Zimmerman J. B. // Environmental Science & Technology. – 2003. – 37(23). – P. 434A–441A. doi:10.1021/es0326322. 54. Gagnon B. Sustainable Development in Engineering: A Review of Principles and Definition of a Conceptual Framework / Gagnon B., Leduc R., Savard L. // Environmental Engineering Science. –2009.– # 26(10). – P.819–822. http://books.google.com/books?id=3dMdRQAACAAJ http://books.google.com/books?id=3dMdRQAACAAJ http://books.google.com/books?id=WjdmEGD5L7gC http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=0142694X&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.rmi.org%252Frmi%252FLibrary%252F2010-10_10xEPrinciples http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=0142694X&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.rmi.org%252Frmi%252FLibrary%252F2010-10_10xEPrinciples http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1000L86.txt ЕКОЛОГІЯ І ПРИРОДОКОРИСТУВАННЯ, 2013, Випуск 16 156 55. Mitsch W. Ecological engineering applied to river and wetland restoration / Mitsch W.J., Lefeuvre J.-C., Bouchard V. // Ecological Engineering. – 2002. – 18(5). – P. 529–541. 56. Li X. Soil bioengineering and the ecological restoration of riverbanks at the Airport Town, Shanghai, China / Li X., Zhang L., Zhang Z. // Ecological Engineering. – 2006. – 26(3). – P. 304–314. 57. García-Serna J. New trends for design towards sustainability in chemical engineering: Green engineering / García-Serna J., Pérez-Barrigón L., Cocero M.J. // Chemical Engineering Journal. – 2007. – 133(1–3). – P. 7–30. doi:http://dx.doi.org/10.1016/j.cej.2007.02.028. 58. Hooper D.U. The effects of plant composition and diversity on ecosystem processes / D.U. Hooper, P.M. Vitousek // Science. – 1997. – # 277. – P. 1302–1305. 59. Biodiversity and ecosystem functioning: current knowledge and future challenges / [M. Loreau, S. Naeem, P. Inchausti et al.] // Science. – 2001. – # 294. – P. 804–808. 60. B.J. Cardinale et al. Effects of biodiversity on the functioning of trophic groups and ecosystems / [B.J. Cardinale, D.S. Srivastava, J. Emmett Duffy, et al.]// Nature. – 2006. – # 433. – P. 989–992. 61. Solé R.V. Self-Organization in Complex Ecosystems / R.V. Solé, J. Bascompte // Monographs in Population Biology. – 2006. – vol. 42. 62. Smetana S.M. Environmentally safe and economically friendly multidisciplinary industrial technologies as innovative approach towards sustainable development / S.M. Smetana, O.M. Smetana // Technologies for Sus- tainable Development: A Way to Reduce Poverty? 2012 Tech4Dev International Conference 29-31 May, 2012 EPFL, Lausanne, Switzerland. – b_251. Стаття надійшла до редколегії 16.04. 2013 р. англійською мовою Стаття рекомендована членом редколегії канд. біол. наук О.О. Скрипником С.М. СМЕТАНА*, О.М. СМЕТАНА** *Інститут сталих систем Брук Байера, Технологічний інститут Джорджії, Атланта, Джорджія, США **Криворізький ботанічний сад НАН України, м. Кривий Ріг, Україна ВІДНОВЛЕННЯ ПОУШЕНИХ ГІРНИЧИМИ РОБОТАМИ ЗЕМЕЛЬ ДЛЯ СТАЛОГО ФУНКЦІОНУВАННЯ З ВИКОРИСТАННЯМ ЛАНДШАФТНОЇ БІОМІМІКРІЇ У статті наведені основні теоретичні та практичні наробки з напрямку біомімікрії на ландшафтному рівні при відновлені порушених гірничими роботами земель. Наведено ус- пішний практичний приклад створення центрів відновлення біорізноманіття на порушених землях за відкритої розробки корисних копалин. Ключові слова: ландшафтна біомімікрія, землі порушені гірничими роботами, відновлен- ня на засадах сталого розвитку. С.Н. СМЕТАНА*, А.Н. СМЕТАНА** *Институт устойчивых систем Брук Байера, Технологический институт Джорджии, Атланта, Джорджия, США **Криворожский ботанический сад НАН Украины, г.Кривой Рог, Украина ВОССТАНОВЛЕНИЕ НАРУШЕННЫХ ГОРНЫМИ РАБОТАМИ ЗЕМЕЛЬ ДЛЯ УСТОЙЧИВОГО ФУНКЦИОНИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ЛАНДШАФТНОЙ БИОМИМИКРИИ В статье приведены основные теоретические и практические наработки в направлении биомимикрии на ландшафтном уровне при восстановлении нарушенных горными рабо- тами земель. Приведен успешный практический пример создания центров восстановле- ния биоразнообразия на нарушенных землях при открытой разработке полезных иско- паемых. Ключевые слова: ландшафтная биомимикрия, земли нарушенные горными работами, восстановление на принципах устойчивого развития.