Математическое моделирование отношений эллипсов в задачах оптимальной кластеризации объектов
В статье рассматриваются конструктивные средства математического и компьютерного моделирования отношений (включения, пересечения, касания, непересечения) эллиптических объектов. Определяется полный класс свободных от радикалов аппроксимаций phi-функций для эллипсов и их дополнений. Строится математи...
Gespeichert in:
| Veröffentlicht in: | Штучний інтелект |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут проблем штучного інтелекту МОН України та НАН України
2012
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/57700 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Математическое моделирование отношений эллипсов в задачах оптимальной кластеризации объектов / А.В. Панкратов, Т.Е. Романова, И.А. Суббота // Штучний інтелект. — 2012. — № 4. — С. 89-96. — Бібліогр.: 10 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | В статье рассматриваются конструктивные средства математического и компьютерного моделирования отношений (включения, пересечения, касания, непересечения) эллиптических объектов. Определяется полный класс свободных от радикалов аппроксимаций phi-функций для эллипсов и их дополнений. Строится математическая модель задачи оптимальной кластеризации эллиптических объектов в виде последовательности задач нелинейной оптимизации. Приводятся результаты тестовых примеров.
У статті розглянуті конструктивні засоби математичного та комп’ютерного моделювання відносин (включення, перетину, дотику, неперетину) еліптичних об’єктів. Визначено повний клас апроксимацій phi-функцій (що вільні від радикалів) для еліпсів та їх доповнень. Побудовано математичну модель задачі оптимальної кластеризації еліптичних об’єктів у вигляді послідовності задач нелінійної оптимізації. Наведено результати тестових прикладів.
The article considers constructive tools of mathematical modeling and computer simulation technique of relations (inclusion, non-intersecting, touching, intersecting) between elliptic objects. A complete class of free radical approximations of phi-functions for ellipses and their complements are defined. We provide a mathematical model of the optimal clustering of elliptic objects in the form of constrained optimisation problem. A number of computational results are given.
|
|---|---|
| ISSN: | 1561-5359 |