Математическое моделирование отношений эллипсов в задачах оптимальной кластеризации объектов

В статье рассматриваются конструктивные средства математического и компьютерного моделирования отношений (включения, пересечения, касания, непересечения) эллиптических объектов. Определяется полный класс свободных от радикалов аппроксимаций phi-функций для эллипсов и их дополнений. Строится математи...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Штучний інтелект
Дата:2012
Автори: Панкратов, А.В., Романова, Т.Е., Суббота, И.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/57700
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Математическое моделирование отношений эллипсов в задачах оптимальной кластеризации объектов / А.В. Панкратов, Т.Е. Романова, И.А. Суббота // Штучний інтелект. — 2012. — № 4. — С. 89-96. — Бібліогр.: 10 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В статье рассматриваются конструктивные средства математического и компьютерного моделирования отношений (включения, пересечения, касания, непересечения) эллиптических объектов. Определяется полный класс свободных от радикалов аппроксимаций phi-функций для эллипсов и их дополнений. Строится математическая модель задачи оптимальной кластеризации эллиптических объектов в виде последовательности задач нелинейной оптимизации. Приводятся результаты тестовых примеров. У статті розглянуті конструктивні засоби математичного та комп’ютерного моделювання відносин (включення, перетину, дотику, неперетину) еліптичних об’єктів. Визначено повний клас апроксимацій phi-функцій (що вільні від радикалів) для еліпсів та їх доповнень. Побудовано математичну модель задачі оптимальної кластеризації еліптичних об’єктів у вигляді послідовності задач нелінійної оптимізації. Наведено результати тестових прикладів. The article considers constructive tools of mathematical modeling and computer simulation technique of relations (inclusion, non-intersecting, touching, intersecting) between elliptic objects. A complete class of free radical approximations of phi-functions for ellipses and their complements are defined. We provide a mathematical model of the optimal clustering of elliptic objects in the form of constrained optimisation problem. A number of computational results are given.
ISSN:1561-5359