Разработка структуры текстонезависимой системы идентификации диктора

В статье рассмотрены основные технологии, используемые при создании систем идентификации диктора, и трудности, с которыми сталкиваются их разработчики. Предложена структура системы текстонезависи- мой идентификации диктора, использующая автоматическую дикторонезависимую сегментацию речевого сигнала...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Штучний інтелект
Дата:2012
Автор: Клименко, Н.С.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/57712
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Разработка структуры текстонезависимой системы идентификации диктора / Н.С. Клименко // Штучний інтелект. — 2012. — № 4. — С. 161-171. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В статье рассмотрены основные технологии, используемые при создании систем идентификации диктора, и трудности, с которыми сталкиваются их разработчики. Предложена структура системы текстонезависи- мой идентификации диктора, использующая автоматическую дикторонезависимую сегментацию речевого сигнала с одновременной классификацией сегментов. Такой подход повышает точность модели диктора и нивелирует разногласие между обучающим и распознаваемым контекстом. У статті розглянуті основні технології, що використовуються при створенні систем ідентифікації диктора, і труднощі, з якими стикаються їх розробники. Запропоновано структуру системи текстонезалежної ідентифікації диктора, що використовує автоматичну дикторонезалежну сегментацію мовного сигналу з одночасною класифікацією сегментів. Такий підхід підвищує точність моделі диктора і нівелює суперечність між навчальним і розпізнавальним контекстом. In the article, principal technologies used in the creation of speaker identification systems and difficulties faced by their developers are considered. The structure of text-independent speaker identification using automatic segmentation of speech signal with simultaneous speaker-independent classification of segments is proposed. This approach improves accuracy of the speaker model and eliminates disagreement between training and recognizable context.
ISSN:1561-5359