Влияние вида меры расстояния на чувствительность нейро-фаззи кластеризации многомерных данных

В статье предложен алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению неевклидовых метрик, вычисление которых основано на использовании матрицы ковариации, обладает более высокой чувствительностью при обработке многомерных данных. Представлены экспериментальные результаты...

Full description

Saved in:
Bibliographic Details
Published in:Штучний інтелект
Date:2012
Main Authors: Ахметшина, Л.Г., Егоров, А.А.
Format: Article
Language:Russian
Published: Інститут проблем штучного інтелекту МОН України та НАН України 2012
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/57898
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Влияние вида меры расстояния на чувствительность нейро-фаззи кластеризации многомерных данных / Л.Г. Ахметшина, А.А. Егоров // Штучний інтелект. — 2012. — № 4. — С. 535-545. — Бібліогр.: 8 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:В статье предложен алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению неевклидовых метрик, вычисление которых основано на использовании матрицы ковариации, обладает более высокой чувствительностью при обработке многомерных данных. Представлены экспериментальные результаты применения предложенного алгоритма для кластеризации низкоконтрастных цветных медицинских изображений. У статті запропоновано алгоритм гібридної нечіткої кластеризації mdsFCM, який завдяки застосуванню неевклідових метрик, заснованих на використанні матриці коваріації, має більш високий рівень чутливості при обробці багатовимірних даних. Представлені експериментальні результати застосування запропонованого алгоритму для кластеризації низькоконтрастних кольорових медичних зображень. This article deals with the description of the hybrid fuzzy clustering algorithm mdsFCM, which is used non-Euclidian distances based on calculation the covariance matrix. This algorithm has the greater level of sensitivity while processing multidimensional data. The experimental results of the application of the proposed algorithm for low-contrast medical color images clustering are shown.
ISSN:1561-5359