Влияние вида меры расстояния на чувствительность нейро-фаззи кластеризации многомерных данных
В статье предложен алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению неевклидовых метрик, вычисление которых основано на использовании матрицы ковариации, обладает более высокой чувствительностью при обработке многомерных данных. Представлены экспериментальные результаты...
Gespeichert in:
| Datum: | 2012 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут проблем штучного інтелекту МОН України та НАН України
2012
|
| Schriftenreihe: | Штучний інтелект |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/57898 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Влияние вида меры расстояния на чувствительность нейро-фаззи кластеризации многомерных данных / Л.Г. Ахметшина, А.А. Егоров // Штучний інтелект. — 2012. — № 4. — С. 535-545. — Бібліогр.: 8 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | В статье предложен алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению неевклидовых метрик, вычисление которых основано на использовании матрицы ковариации, обладает более высокой чувствительностью при обработке многомерных данных. Представлены экспериментальные результаты применения предложенного алгоритма для кластеризации низкоконтрастных цветных медицинских изображений. |
|---|