Влияние вида меры расстояния на чувствительность нейро-фаззи кластеризации многомерных данных

В статье предложен алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению неевклидовых метрик, вычисление которых основано на использовании матрицы ковариации, обладает более высокой чувствительностью при обработке многомерных данных. Представлены экспериментальные результаты...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Ахметшина, Л.Г., Егоров, А.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2012
Назва видання:Штучний інтелект
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/57898
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Влияние вида меры расстояния на чувствительность нейро-фаззи кластеризации многомерных данных / Л.Г. Ахметшина, А.А. Егоров // Штучний інтелект. — 2012. — № 4. — С. 535-545. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В статье предложен алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению неевклидовых метрик, вычисление которых основано на использовании матрицы ковариации, обладает более высокой чувствительностью при обработке многомерных данных. Представлены экспериментальные результаты применения предложенного алгоритма для кластеризации низкоконтрастных цветных медицинских изображений.