Метод оценки кластерной структуры и кластеризации данных

В статье рассматривается проблема разработки методов кластеризации, которые являются устойчивыми к инициализации (количество кластеров и начальные параметры кластеров), к различным по объему кластерам, к выбросам в данных. Предлагается метод оценки кластерной структуры и кластеризации данных, которы...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Штучний інтелект
Datum:2010
Hauptverfasser: Новоселова, Н.А., Том, И.Э.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем штучного інтелекту МОН України та НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/58492
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Метод оценки кластерной структуры и кластеризации данных / Н.А. Новоселова, И.Э. Том // Штучний інтелект. — 2010. — № 4. — С. 442-452. — Бібліогр.: 18 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-58492
record_format dspace
spelling Новоселова, Н.А.
Том, И.Э.
2014-03-25T15:19:39Z
2014-03-25T15:19:39Z
2010
Метод оценки кластерной структуры и кластеризации данных / Н.А. Новоселова, И.Э. Том // Штучний інтелект. — 2010. — № 4. — С. 442-452. — Бібліогр.: 18 назв. — рос.
1561-5359
https://nasplib.isofts.kiev.ua/handle/123456789/58492
004.8
В статье рассматривается проблема разработки методов кластеризации, которые являются устойчивыми к инициализации (количество кластеров и начальные параметры кластеров), к различным по объему кластерам, к выбросам в данных. Предлагается метод оценки кластерной структуры и кластеризации данных, который основан на расчете значений близости объектов данных в многомерном признаковом пространстве. Метод является устойчивым к инициализации параметров кластеризации, к выбросам в данных и позволяет определять кластерную структуру и количество кластеров в ходе самоорганизации объектов данных.
У статті розглядається проблема розробки методів кластеризації, які є стійкими до ініціалізації (кількість кластерів і початкові параметри кластерів), до різних за об’ємом кластерів, до викидів в даних. Пропонується метод оцінки кластерної структури і кластеризації даних, який заснований на розрахунку значень близькості об’єктів даних в багатовимірному ознаковому просторі. Метод є стійким до ініціалізації параметрів кластеризації, до викидів в даних і дозволяє визначати кластерну структуру і кількість кластерів в ході самоорганізації об’єктів даних.
The paper is devoted to the problem of development of the clustering methods, which are robust to initialization (number of clusters and initial cluster parameters), to the different cluster volumes, to the outliers. It is proposed a method for estimation of cluster structure and clustering of data, based on the evaluation of similarity measure between data objects in multidimensional space. The proposed method is robust to initialization of clustering parameters, to outliers and allows definition of cluster structure and number of clusters in the data self-organizing process.
ru
Інститут проблем штучного інтелекту МОН України та НАН України
Штучний інтелект
Интеллектуальные системы планирования, управления, моделирования и принятия решений
Метод оценки кластерной структуры и кластеризации данных
Метод оцінки кластерної структури і кластеризації даних
Method of Evaluation of Clustering Structure and Data Clustering
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Метод оценки кластерной структуры и кластеризации данных
spellingShingle Метод оценки кластерной структуры и кластеризации данных
Новоселова, Н.А.
Том, И.Э.
Интеллектуальные системы планирования, управления, моделирования и принятия решений
title_short Метод оценки кластерной структуры и кластеризации данных
title_full Метод оценки кластерной структуры и кластеризации данных
title_fullStr Метод оценки кластерной структуры и кластеризации данных
title_full_unstemmed Метод оценки кластерной структуры и кластеризации данных
title_sort метод оценки кластерной структуры и кластеризации данных
author Новоселова, Н.А.
Том, И.Э.
author_facet Новоселова, Н.А.
Том, И.Э.
topic Интеллектуальные системы планирования, управления, моделирования и принятия решений
topic_facet Интеллектуальные системы планирования, управления, моделирования и принятия решений
publishDate 2010
language Russian
container_title Штучний інтелект
publisher Інститут проблем штучного інтелекту МОН України та НАН України
format Article
title_alt Метод оцінки кластерної структури і кластеризації даних
Method of Evaluation of Clustering Structure and Data Clustering
description В статье рассматривается проблема разработки методов кластеризации, которые являются устойчивыми к инициализации (количество кластеров и начальные параметры кластеров), к различным по объему кластерам, к выбросам в данных. Предлагается метод оценки кластерной структуры и кластеризации данных, который основан на расчете значений близости объектов данных в многомерном признаковом пространстве. Метод является устойчивым к инициализации параметров кластеризации, к выбросам в данных и позволяет определять кластерную структуру и количество кластеров в ходе самоорганизации объектов данных. У статті розглядається проблема розробки методів кластеризації, які є стійкими до ініціалізації (кількість кластерів і початкові параметри кластерів), до різних за об’ємом кластерів, до викидів в даних. Пропонується метод оцінки кластерної структури і кластеризації даних, який заснований на розрахунку значень близькості об’єктів даних в багатовимірному ознаковому просторі. Метод є стійким до ініціалізації параметрів кластеризації, до викидів в даних і дозволяє визначати кластерну структуру і кількість кластерів в ході самоорганізації об’єктів даних. The paper is devoted to the problem of development of the clustering methods, which are robust to initialization (number of clusters and initial cluster parameters), to the different cluster volumes, to the outliers. It is proposed a method for estimation of cluster structure and clustering of data, based on the evaluation of similarity measure between data objects in multidimensional space. The proposed method is robust to initialization of clustering parameters, to outliers and allows definition of cluster structure and number of clusters in the data self-organizing process.
issn 1561-5359
url https://nasplib.isofts.kiev.ua/handle/123456789/58492
citation_txt Метод оценки кластерной структуры и кластеризации данных / Н.А. Новоселова, И.Э. Том // Штучний інтелект. — 2010. — № 4. — С. 442-452. — Бібліогр.: 18 назв. — рос.
work_keys_str_mv AT novoselovana metodocenkiklasternoistrukturyiklasterizaciidannyh
AT tomié metodocenkiklasternoistrukturyiklasterizaciidannyh
AT novoselovana metodocínkiklasternoístrukturiíklasterizacíídanih
AT tomié metodocínkiklasternoístrukturiíklasterizacíídanih
AT novoselovana methodofevaluationofclusteringstructureanddataclustering
AT tomié methodofevaluationofclusteringstructureanddataclustering
first_indexed 2025-11-29T12:48:19Z
last_indexed 2025-11-29T12:48:19Z
_version_ 1850854916846780417