Получение шаблонов для распознавания символов автомобильного номера на основе взвешивания обучающего набора

В статье предлагается алгоритм получения шаблонов для решения задачи распознавания символов автомобильного номера методом сопоставления с эталоном. Предлагаемый алгоритм основан на взвешивании обучающего набора и позволяет получить шаблоны каждого класса символов на основе минимизации средней ошибки...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Штучний інтелект
Дата:2011
Автор: Мурыгин, К.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2011
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/58849
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Получение шаблонов для распознавания символов автомобильного номера на основе взвешивания обучающего набора / К.В. Мурыгин // Штучний інтелект. — 2011. — № 2. — С. 164-170. — Бібліогр.: 6 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В статье предлагается алгоритм получения шаблонов для решения задачи распознавания символов автомобильного номера методом сопоставления с эталоном. Предлагаемый алгоритм основан на взвешивании обучающего набора и позволяет получить шаблоны каждого класса символов на основе минимизации средней ошибки классификации по всем классам. Полученные предложенным методом шаблоны позволяют решать задачу классификации символов с меньшей ошибкой, чем при использовании в качестве шаблонов центров распределений классифицируемых классов, сохраняя при этом хорошую обобщающую способность метода сопоставления с эталоном. In article the algorithm of templates calculation for the decision of a problem of car plates symbols recognition based on template matching is offered. The offered algorithm is based on weighing of a training set and allows obtaining templates of each class of symbols on the basis of minimization of an average error of classification by all classes. The templates received by an offered method allow to solve a problem of symbols classification with a smaller error, than at use as templates of the centers of distributions of classified classes, keeping thus good generalizing ability of a template matching method.
ISSN:1561-5359