Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise
Stochastic processes of counts have very broad applications in view of the host of integer-valued time series which cannot be satisfactorily handled within the classical framework of Gaussian-like series. In this paper we discuss recursive filters for partially observed discrete-valued time series...
Збережено в:
| Опубліковано в: : | Электронное моделирование |
|---|---|
| Дата: | 2011 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
2011
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/61760 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise / L. Aggoun // Электронное моделирование. — 2011 — Т. 33, № 3. — С. 13-21. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-61760 |
|---|---|
| record_format |
dspace |
| spelling |
Aggoun, L. 2014-05-11T10:08:21Z 2014-05-11T10:08:21Z 2011 Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise / L. Aggoun // Электронное моделирование. — 2011 — Т. 33, № 3. — С. 13-21. — Бібліогр.: 10 назв. — англ. 0204-3572 https://nasplib.isofts.kiev.ua/handle/123456789/61760 Stochastic processes of counts have very broad applications in view of the host of integer-valued time series which cannot be satisfactorily handled within the classical framework of Gaussian-like series. In this paper we discuss recursive filters for partially observed discrete-valued time series where the noise in the observations is a fractional Gaussian noise. Стохастическая обработка отсчетов широко применяется в множестве задач, содержащих целочисленно-оцениваемые временные ряды, которыми нельзя удовлетворительно оперировать в рамках классических Гауссово-подобных рядов. Рассмотрены рекурсивные фильтры для частично наблюдаемых дискретно-оцениваемых рядов, в которых шумы наблюдений являются дробными Гауссовыми шумами. Стохастична обробка відліків широко застосовується у багатьох задачах з цілочислооцінюваними часовими рядами, котрими не можна задовільно оперувати в рамках класичних Гаусово-подібних рядів. Розглянуто рекурсивні фільтри для частково спостережуваних дискретно-оцінюваних рядів, в котрих шуми спостережень є дробовими Гаусовими шумами. uk Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України Электронное моделирование Математические методы и модели Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise |
| spellingShingle |
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise Aggoun, L. Математические методы и модели |
| title_short |
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise |
| title_full |
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise |
| title_fullStr |
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise |
| title_full_unstemmed |
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise |
| title_sort |
partially observed discrete-valued time series in fractional gaussian noise |
| author |
Aggoun, L. |
| author_facet |
Aggoun, L. |
| topic |
Математические методы и модели |
| topic_facet |
Математические методы и модели |
| publishDate |
2011 |
| language |
Ukrainian |
| container_title |
Электронное моделирование |
| publisher |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України |
| format |
Article |
| description |
Stochastic processes of counts have very broad applications in view of the host of integer-valued time series which cannot be satisfactorily handled within the classical framework of Gaussian-like series. In this paper we discuss recursive filters for partially observed discrete-valued time series where the noise in the observations is a fractional Gaussian noise.
Стохастическая обработка отсчетов широко применяется в множестве задач, содержащих целочисленно-оцениваемые временные ряды, которыми нельзя удовлетворительно оперировать в рамках классических Гауссово-подобных рядов. Рассмотрены рекурсивные фильтры для частично наблюдаемых дискретно-оцениваемых рядов, в которых шумы наблюдений являются дробными Гауссовыми шумами.
Стохастична обробка відліків широко застосовується у багатьох задачах з цілочислооцінюваними часовими рядами, котрими не можна задовільно оперувати в рамках класичних Гаусово-подібних рядів. Розглянуто рекурсивні фільтри для частково спостережуваних дискретно-оцінюваних рядів, в котрих шуми спостережень є дробовими Гаусовими шумами.
|
| issn |
0204-3572 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/61760 |
| citation_txt |
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise / L. Aggoun // Электронное моделирование. — 2011 — Т. 33, № 3. — С. 13-21. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT aggounl partiallyobserveddiscretevaluedtimeseriesinfractionalgaussiannoise |
| first_indexed |
2025-11-27T05:28:27Z |
| last_indexed |
2025-11-27T05:28:27Z |
| _version_ |
1850798433507475456 |
| fulltext |
Lakhdar Aggoun
Department of Mathematics and Statistics,
Sultan Qaboos University
(Sultanate of Oman, E-mail: laggoun@squ.edu.om)
Partially Observed Discrete-Valued
Time Series in Fractional Gaussian Noise
(Recommended by Prof. E. Dshalalow)
Stochastic processes of counts have very broad applications in view of the host of integer-valued
time series which cannot be satisfactorily handled within the classical framework of Gaussi-
an-like series. In this paper we discuss recursive filters for partially observed discrete-valued time
series where the noise in the observations is a fractional Gaussian noise.
Ñòîõàñòè÷åñêàÿ îáðàáîòêà îòñ÷åòîâ øèðîêî ïðèìåíÿåòñÿ â ìíîæåñòâå çàäà÷, ñîäåðæàùèõ
öåëî÷èñëåííî-îöåíèâàåìûå âðåìåííûå ðÿäû, êîòîðûìè íåëüçÿ óäîâëåòâîðèòåëüíî îïå-
ðèðîâàòü â ðàìêàõ êëàññè÷åñêèõ Ãàóññîâî-ïîäîáíûõ ðÿäîâ. Ðàññìîòðåíû ðåêóðñèâíûå
ôèëüòðû äëÿ ÷àñòè÷íî íàáëþäàåìûõ äèñêðåòíî-îöåíèâàåìûõ ðÿäîâ, â êîòîðûõ øóìû
íàáëþäåíèé ÿâëÿþòñÿ äðîáíûìè Ãàóññîâûìè øóìàìè.
K e y w o r d s: change of measure, discrete-valued time series, fractional Gaussian noise.
Introduction. The analysis of time series of counts is a rapidly developing area
(e.g. [1—7]). It has very broad application in view of the host of integer-valued
time series which cannot be satisfactorily handled within the classical frame-
work of Gaussian-like series. Many of the phenomena which occur in practice
are by their very nature discrete-valued [4].
To start, we make use of The Binomial thinning operator � introduced in [2,
6], namely: for any nonnegative integer-valued random variable X and� �{ , }0 1 ,
� � X Y j
j
X
�
�
�
1
,
where Y1, Y2, … is a sequence of of i.i.d. random variables independent of X,
such that P Y P Yj j( ) ( )� � � � �1 1 0 �.
With the operator � on hand and xk standing the realization of an integer-
valued process in period k, let x x vk k k� � �� �1 1 1� � , where{ }vk is some integer-
valued stochastic process.
ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2011. Ò. 33. ¹ 3 13
One may think of xk as referring to the number of patients in a hospital in pe-
riod k, then the number of patients in period k + 1 is made up of a portion of those
patients who were present in period k (� � xk �1) and new arriving patients vk+1.
Time series models incorporating � have been extensively examined in [1—3,
5—7].
Dynamics with fractional Gaussian noise. Let Z denote the set of integers,
and Z + denote the set of non- negative integers. Following [8] we define a set of
functions L on Z + with values in R. We suppose that if i < 0, then f (i) = 0. These
functions could be considered as infinite sequences: f i f i( ) � , i = 0, 1, … . Then
we define: if f 1, f 2 are in L the convolution product f 1 * f 2 is defined by
( * )( )f f n f f f fn i i
i
n i i
i
n
1 2 1 2
0
1 2
0
� ��
�
�
�
�
� � .
In this set of functions, consider the function u, which is defined as u = (u0,
u1, ...) = (1, 1, ... ).
The convolution powers of u are as follows:
u0 = (1, 0, 0, ...),
u2 = u * u = (1, 2, 3, ...),
u3 = u2 * u = (1, 3, 6, ...)
…
u
r r r r r rk �
� � �
�
�
�1
1
1
2
1 2
3
,
!
,
( )
!
,
( ) ( )
!
,... .
Note that for any f in L, f u u f f* *0 0� � and for any s, r in R, u u ur s s r* � � . In
particular u u ur r* � � 0.
Let ( , , )� F P be a probability space upon which{ }wk , k �N are independent
and identically distributed (i.i.d.) Gaussian random variables, having zero means
and variances 1 (N (0, 1)). Then [8] the fractional Gaussian noise is defined as
w u w n u wn
r r
i
r
n i
i
n
� � �
�
��
( * ) ( )
0
.
Then wr is a sequence of Gaussian random variables which have memory and
are correlated. Also,
E wn
r[ ]�0,
Var w un
r
i
r
i
n
( ) ( )�
�
� 2
0
,
Lakhdar Aggoun
14 ISSN 0204–3572. Electronic Modeling. 2011. V. 33. ¹ 3
Cov w w u un
r
n
r
n i
r
n i
r
i
n
( , )� � � �
�
�
� ��1 1
0
1
1.
Now consider a system whose state at time k is xk � �Z . The time index k of
the state evolution will be discrete and identified with N �{ , , , ...}0 1 2 . The state
of the system satisfies the dynamics
x x vk k k k� �� �1 1� � . (1)
Here { }vk , k �N are independent and identically distributed random variables
such that, for all k, vk � �Z has probability distribution �.
A noisy observation of xk is to suppose it is given as a linear function of xk
plus a random «noise» term. That is, we suppose that for some real numbers ck
and positive real numbers dk our observations have the form
y c x d wk k k k k
r� � .
Following [8] let z u y kk
r� �( * ) ( ). Therefore
z c u x k d w c h x x d wk k
r
k k k k k k� � � ��( * ) ( ) ( , ,...)
�
0 1 ,
(2)
where w is a sequence of i.i.d. N (0, 1). Write{ }Z k , k �N for the complete filtra-
tion generated by{ , ,..., }z z zk0 1 .
Using measure change techniques we shall derive a recursive expression for
the conditional distribution of xk given Z k .
Filtering. Initially we suppose all processes are defined on an «ideal» prob-
ability space ( , , )� F P ; then under a new probability measure P, to be defined,
the model dynamics (1) and (2) will hold. Suppose that under P:
1) { }xk , k �N is an i.i.d. sequence with probability distribution � ( )x with
support in Z� ;
2){ }zk , k �N is an i.i.d. N (0, 1) sequence with density function
�
�
( ) /z e z� �1
2
2 2.
Let
�
�
�
0
0
1
0 0 0 0
0 0
�
��( ( ( )))
( )
d z c h x
d z
and for l = 1, 2, ... .
�
� � �
�
l
l l l l l l l l
l
x x d z c h x x
d x
�
� �� �
�( ) ( ( ( ,..., )))
(
1 1
1
0�
l lz�� ( )
.
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise
ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2011. Ò. 33. ¹ 3 15
Set
�k l
l
k
�
�
� �
0
.
(3)
Let G k be the complete �-field generated by { , , ..., , , ...x x x xk0 1 0 0� �
..., , , , ..., }� k k kx z z z� 0 1 for k �N.
Lemma 1. The process{ }�k , is a P-martingale with respect to the filtration
{G k }, with k �N.
P r o o f. Since �k isG k -measurable E Ek k k k k[ ] [ ]� �� ��1 1|G |G� . There-
fore we must show that E k k[ ]� � �1 1|G :
E k k[ ]� � �1|G
�
� �� �
�
� � � �E
x x d y c h x xk k k k k k k k� � �( ) ( ( ( , ..., )1 1
1
1 1 1 0 1� ))
( ( )d x zk k k
k
� � �
�
�
�
�
�
� �
1 1 1� ��
|G
�
��
�
�
��
�
�
�
� � �E
x x
x
E
d y c h xk k k
k
k k k k� �
�
�( )
( )
( ( (1
1
1
1
1 1 1� 0 1
1 1
, ..., )))
( )
x
d z
k
k k
�
� �
�
�
� �
�
� �
���|G |Gk k kx, | ]1 .
Now,
E
d z c h x x
d z
k k k k k
k k
�
�
( ( ( , ..., )))
( )
�
�
� � � �
� �
�1
1
1 1 1 0 1
1 1
|G k kx, �
�
�
�
�
�
� �1
�
�
�
�
� � �
�R
�
�
�
( ( ( , ..., )))
( )
( )
d z c h x x
d z
z dk k k k
k
1
1
1 1 0 1
1
z �1;
E
x x
x
E
x x
x
k k k
k
k
x
k k� �
�
� �
�
( )
( )
( )
(
�
� �
��
�
�
�
�
� �
�
�
�1
1
� �
|G
Z )
( ) ( )� �x uk
u
|G
�
�
�
�
�
� � �
� �
�
Z
1.
Define P on ( , )� F by setting the restriction of the Radon-Nykodim derivative
dP
dP
to G k equal to �k .
A key result which relates expectation under P and P is given by a Bayes’s
like formulae ([9, 10])
E I x x
E I x x
E
k k
k k k
k k
[ ( ]
[ ( ]
[ ]
� �
�
|G
|G
|G
�
�
,
where E (resp. E) denotes expectations with respect to P (resp. P).
Lakhdar Aggoun
16 ISSN 0204–3572. Electronic Modeling. 2011. V. 33. ¹ 3
The next result shows that the original model can be recovered by some simple
transformations.
Lemma 2. The stochastic process{ }vk , k �N is an i.i.d sequence with den-
sity function � ( )x with support in Z� and{ }wk , k �N are i.i.d. N (0, 1) sequences
of random variables, where
v x xk k k k� �� �1 1
�
( )� � ,
w d z c h x xk k k k k k� ��� 1
0( ( ,..., )) .
P r o o f. Suppose f, g :R R! are «test» functions (i.e. measurable functions
with compact support). Then with E (resp. E) denoting expectation under P
(resp. P) and using Bayes’ Theorem
E f v g w
E f v g w
E
k k k
k k k k k
k
[ ( ) ( ) ]
[ ( ) ( ) ]
� �
� � ��1 1
1 1 1|G
|G�
�
�
[ ]�k k�
�
1|G
� E f v g wk k k k[ ( ) ( ) ]� � � �1 1 1 |G ,
where the last equality follows from Lemma 1. Consequently
E f v g wk k k[ ( ) ( ) ]� � �1 1 |G
�
� �� �
�
� � � �E
x x d z c h x xk k k k k k k k� � �( ) ( ( ( ,..., )1 1
1
1 1 1 0 1� ))
( ( )d x zk k k� � �
�
�
� �
1 1 1� ��
� � �� �
�
� � � �f x x g d z c h x xk k k k k k k k( ) ( ( ( ,..., ))1 1
1
1 1 1 0 1� � ) ]|G k �
�
��
�
� � ��
�
�E
x x
x
f x xk k k
k
k k k
� �
�
�
( )
( )
( )1
1
1
�
�
�
��
�
� � � �
� �
E
d y c h x x
d z
k k k k k
k k
�
�
( ( ( ,..., )))
( )
1
1
1 1 1 0 1
1 1
�
�
� �
� ��
�
� � � � �g d z c h x x xk k k k k k k k( ( ( ,..., ))) , ]1
1
1 1 1 0 1 1|G |G ] .
Now
E
d y c h x x
d z
k k k k k
k k
�
�
( ( ( ,..., )))
( )
�
�
� � � �
� �
�� 1
1
1 1 1 0 1
1 1�
� �
� � ��
�
� � � � �g d z c h x x xk k k k k k k( ( ( ,..., ))) , ]1
1
1 1 1 0 1 1|G
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise
ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2011. Ò. 33. ¹ 3 17
�
�
� �
�
� � �
�R
�
�
�
( ( ( ,..., )))
( )
( )
d z c h x x
d z
zk k k k
k
1
1
1 1 0 1
1
� � ��
�
� � � g d z c h x x dz u g u duk k k k( ( ( ,..., ))) ( ) ( )1
1
1 1 0 1
R
�
and
E
x x
x
f x xk k k
k
k k k k
� �
�
�
( )
( )
( )�
�
�
�
�
�
�
�
�
�
� �1
1
1
�
� |G
�
�
�
�
�
�
�
�
� �
� �� �
� �E
x x
x
x f x x
x
k k
k k k
tZ Z
� �
�
� �
( )
( )
( ) ( )
�
� |G � ( ) ( )t f t .
Therefore
E f v g w t f t u g u duk k k
t
[ ( ) ( ) ] ( ) ( ) ( ) ( )� �
�
�
�
� 1 1 |G
Z R
� � .
The lemma is proved.
Consider the un-normalized, conditional expectation which is the numerator
of (3) and write E I x x q xk k k k[ ( ) ] ( )� � �|Z . If pk ( )" denotes the normalized
conditional density, such that E I x x p xk k k[ ( ) ] ( )� �|Z , and from (4) we see
that
p x q x q tk k
t
k( ) ( ) ( )�
�
�
�
�
�
�
�
�
�
�
Z
1
, k �N .
Then we have the following result.
Theorem 1.
q x
d z c h x
d d z z
k
k k
�
�
� �
�
�
1
0
1
0 0 0 0
0 1 0
( )
( ( ( )))
... ( ) ... (
�
� � 1 )
�
� � �
� �
�
� �
� �
x xk
d z c h x x
1
1
1
1 1 1 0 1
Z Z
... ( ( ( , )))�
� � ��
�
� � �� ( ( ( , ..., , )))d z c h x x xk k k k k1
1
1 1 1 0
� �
�
�
� �
�
�� � � �( ) ( )x m
x
m
k
m
x
k
k
k
m
k
x m
k
k
k k k
0
1 � � �( ) ( )x m
x
mm
x
m x m
1 0
0
0
0
0 0
0
0
0 0 01�
�
�
� �
�
�� .
P r o o f. In view of (3)
E I x xk k k k[ ( ) ]� � � � �� �1 1 1|Z
Lakhdar Aggoun
18 ISSN 0204–3572. Electronic Modeling. 2011. V. 33. ¹ 3
�
� ��
�
� � �E
x x d z c h x x x
k
k k k k k k k�
� � �( ) ( ( ( , ..., , ))� 1
1
1 1 1 0 )
( ( )
( )
d x z
x
k k
k
� �
�
�
�
�
�
�
� �
1 1
1
� ��
� |Z
�
�
�
�
�
�
�E
d z c h x x
d x z
k
x
k k k k k
k k kk
� 1
1
0
Z
�
� ��
( ( ( ,..., )))
( ( )
( ) ( )� � �x x xk k k k�
�
�
� �� �1 1�
� �
�
�
� � �
�
�� � � �( ) ( )x m
x
m
k
m
x
k
k
k
m
k
x m
k
k
k k k
0
1
�
��
�
� � �
� �
�
�
( ( ( ,..., , )))
( )
d z c h x x x
d z
k k k k k
k k
1
1
1 1 1 0
1 1
|Z k �
�
�
�1 ...
...
( ( ( )))
... ( ) ... ( )
�
� �
d z c h x
d d z zk k
0
1
0 0 0 0
0 1 0 1
�
� �
�
�
� �
� �
�
� �
� �
x xk
d z c h x x
1
1
1
1 1 1 0 1
Z Z
... ( ( ( , ))) ...�
... ( ( ( , ..., , )))� d z c h x x xk k k k k�
�
� � �� �1
1
1 1 1 0
� �
�
�
� �
�
�� � � �( ) ( )x m
x
m
k
m
x
k
k
k
m
k
x m
k
k
k k k
0
1 ... � � �( ) ( )x m
x
mm
x
m x m
1 0
0
0
0
0 0
0
0
0 0 01�
�
�
� �
�
�� .
Approximate recursion. In this section, we give recursive approximate es-
timates of the hidden states. Assume that x0 is known and let
x x0 0�� ~ , ~ ( )
( ( (~ ))
( )
( )q x
d z c h x
d z
xx0
0
1
0 0 0 0
0 0
0
�
���
�
# ;
~ ~ ( )x t p tk k
t
�
� �
�
Z
,
where
~ ( ) ~ ( ) ~ ( )p x q x q tk k k
t
� �
�
�
�
�
�
�
�
�
�
�
Z
1
.
Theorem 2. The un-normalized density qk+1(x) is approximately computed
by the recursion
~ ( )
( ( (~ , ..., ~ , )))
q x
d z c h x x x
d
k
k k k k k
k
�
�
�
� � ��
�
1
1
1
1 1 1 0�
� �
�
1 1� ( )zk
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise
ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2011. Ò. 33. ¹ 3 19
� �
�
�
� �
� �
�
�
� �
t r
t
k
r
k
t r
kx r
t
r
q t
Z
� � �( ) ( ) ~ ( )
0
1 . (4)
P r o o f .
E I x xk k k k[ ( ) ]� � � � �� �1 1 1|Z
�
� ��
�
� � �E
x x d z c h x x x
k
k k k k k k k�
� � �( ) ( ( ( ,..., , ))� 1
1
1 1 1 0 )
( )d zk k
k
� �
�
�
�
�
�
�
�
1 1
1
�
|Z .
Now we replace x xk0 ,..., with ~ ,..., ~x xk0 which, of course, are Z k �1 measurable:
E I x xk k k k[ ( ) ]� � � � �� �1 1 1|Z
�
� ��
�
� � �E
x x d z c h x x x
k
k k k k k k k�
� � �( ) ( ( (~ ,..., ~ ,� 1
1
1 1 1 0 )))
( )d zk k
k
� �
�
�
�
�
�
�
� �
1 1
1
�
|Z
�
��
�
� � �
� �
�
�
( ( (~ , ..., ~ , )))
(
d z c h x x x
d z
k k k k k
k k
1
1
1 1 1 0
1 1 )
[ ( ) ]E x xk k k k� � �� ��� |Z 1
�
��
�
� � �
� �
�
�
( ( (~ , ..., ~ , )))
(
d z c h x x x
d z
k k k k k
k k
1
1
1 1 1 0
1 1 )
;
E x r
z
r
I x tk
t r
t
k
r
k
t r
k k�
� �
�
�
� � �
�
�
� � �
�
Z
� � �( ) ( ) ( )
0
1 |Z
�
�
�
�
� �
�
��
�
� � �
� �
�
�
( ( (~ , ..., ~ , )))
(
d z c h x x x
d z
k k k k k
k k
1
1
1 1 1 0
1 1 )
�
� �
�
�
� � �
� �
�
�
� �
t r
t
k
r
k
t r
k kx r
z
r
E I x t
Z
� � �( ) ( ) [ ( )
0
1 � |Z k ]�
�
��
�
� � �
� �
�
�
( ( (~ , ..., ~ , )))
(
d z c h x x x
d z
k k k k k
k k
1
1
1 1 1 0
1 1 )
�
� �
�
�
� �
� �
�
�
� �
t r
t
k
r
k
t r
kx r
z
r
q t
Z
� � �( ) ( ) ( )
0
1 .
Taking ~ ( )q tk as an approximation of q tk ( ) the result follows.
In this paper an integer-valued process state space model is proposed. The
state space model is not directly observed. The observed process is corrupted
with a fractional Gaussian noise. Filters for the partially observed dynamics are
derived.
Lakhdar Aggoun
20 ISSN 0204–3572. Electronic Modeling. 2011. V. 33. ¹ 3
Ñòîõàñòè÷íà îáðîáêà â³äë³ê³â øèðîêî çàñòîñîâóºòüñÿ ó áàãàòüîõ çàäà÷àõ ç ö³ëî÷èñëî-
îö³íþâàíèìè ÷àñîâèìè ðÿäàìè, êîòðèìè íå ìîæíà çàäîâ³ëüíî îïåðóâàòè â ðàìêàõ êëà-
ñè÷íèõ Ãàóñîâî-ïîä³áíèõ ðÿä³â. Ðîçãëÿíóòî ðåêóðñèâí³ ô³ëüòðè äëÿ ÷àñòêîâî ñïîñòåðå-
æóâàíèõ äèñêðåòíî-îö³íþâàíèõ ðÿä³â, â êîòðèõ øóìè ñïîñòåðåæåíü º äðîáîâèìè Ãàó-
ñîâèìè øóìàìè.
1. Aly A. A, Bouzar N. On some integer-valued autoregressive moving average models//J. of
Multivariate Analysis. — 1994. — 50. — P. 132—151.
2. Al-Osh M. N., Alzaid A. A. First order integer-valued autoregressive (INAR(1)) process//
J. Time Series Anal .— 1987. — 8.— P. 261—275.
3. Freeland R. K., McCabe B. P. M. Analysis of low count time series data by poisson
autoregression// J. Time Series Anal. — 2004. — 25, ¹ 5. — P. 701—722.
4. MacDonald I. L. Hidden Markov and Other Models for Discrete-Valued Time Series. —
Chapman & Hall, 1997.
5. Jung R. C., Tremayne A. R. Testing for serial dependence in time series models of counts// J.
Time Series Anal. — 2003. — 24, Iss. 1. — Ð. 65—84.
6. McKenzie E. Some simple models for discrete variate time series// Water Res Bull.— 1985. —
21. — Ð. 645—650.
7. McKenzie E. Some ARMA models for dependent sequences of Poisson counts// Advances
in Applied Probability. — 1988. — 20. — Ð. 822—835.
8. Elliott R. J., Deng J. A Filter for a state space model with fractional Gaussian noise//
Automatica. — 2010. — 46. — P. 1689—1695.
9. Aggoun L., Elliott R. J. Measure Theory and Filtering: Introduction with Applications//
Cambridge Series in Statistical and Probabilistic Mathematics, 2004.
10. Elliot R. J., Aggoun L., Moore J. B. Hidden Markov Models: Estimation and Control. —
New-York: Springer-Verlag, 1995. — Applications of Mathematics N 29.
Submitted 30.12.10
Partially Observed Discrete-Valued Time Series in Fractional Gaussian Noise
ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2011. Ò. 33. ¹ 3 21
22 ISSN 0204–3572. Electronic Modeling. 2011. V. 33. ¹ 3
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Error
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJDFFile false
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /CMYK
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments true
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /ConvertToCMYK
/DestinationProfileName ()
/DestinationProfileSelector /DocumentCMYK
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure false
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles false
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /DocumentCMYK
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /UseDocumentProfile
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|