Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables

A procedure for the synthesis of control signals for three phase matrix frequency converters is presented. The procedure is based on extension of the space of one time variable to the space with two time variables. An expansion of control signals in Fourier series is use.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Технічна електродинаміка
Datum:2012
Hauptverfasser: Korotyeyev, I.Ye., Klytta, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут електродинаміки НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/62103
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables / I.Ye. Korotyeyev, M. Klytta // Технічна електродинаміка. — 2012. — № 2. — С. 55-56. — Бібліогр.: 2 назв. — англ

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-62103
record_format dspace
spelling Korotyeyev, I.Ye.
Klytta, M.
2014-05-16T16:44:17Z
2014-05-16T16:44:17Z
2012
Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables / I.Ye. Korotyeyev, M. Klytta // Технічна електродинаміка. — 2012. — № 2. — С. 55-56. — Бібліогр.: 2 назв. — англ
1607-7970
https://nasplib.isofts.kiev.ua/handle/123456789/62103
621.314
A procedure for the synthesis of control signals for three phase matrix frequency converters is presented. The procedure is based on extension of the space of one time variable to the space with two time variables. An expansion of control signals in Fourier series is use.
en
Інститут електродинаміки НАН України
Технічна електродинаміка
Перетворення параметрів електричної енергії
Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
spellingShingle Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
Korotyeyev, I.Ye.
Klytta, M.
Перетворення параметрів електричної енергії
title_short Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
title_full Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
title_fullStr Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
title_full_unstemmed Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
title_sort control of three phase matrix frequency converters on base of first harmonics method in space with two time variables
author Korotyeyev, I.Ye.
Klytta, M.
author_facet Korotyeyev, I.Ye.
Klytta, M.
topic Перетворення параметрів електричної енергії
topic_facet Перетворення параметрів електричної енергії
publishDate 2012
language English
container_title Технічна електродинаміка
publisher Інститут електродинаміки НАН України
format Article
description A procedure for the synthesis of control signals for three phase matrix frequency converters is presented. The procedure is based on extension of the space of one time variable to the space with two time variables. An expansion of control signals in Fourier series is use.
issn 1607-7970
url https://nasplib.isofts.kiev.ua/handle/123456789/62103
citation_txt Control of three phase matrix frequency converters on base of first harmonics method in space with two time variables / I.Ye. Korotyeyev, M. Klytta // Технічна електродинаміка. — 2012. — № 2. — С. 55-56. — Бібліогр.: 2 назв. — англ
work_keys_str_mv AT korotyeyeviye controlofthreephasematrixfrequencyconvertersonbaseoffirstharmonicsmethodinspacewithtwotimevariables
AT klyttam controlofthreephasematrixfrequencyconvertersonbaseoffirstharmonicsmethodinspacewithtwotimevariables
first_indexed 2025-11-27T02:52:36Z
last_indexed 2025-11-27T02:52:36Z
_version_ 1850795506669715456
fulltext ISSN 1607-7970. . 2012. 2 55 621.314 CONTROL OF THREE PHASE MATRIX FREQUENCY CONVERTERS ON BASE OF FIRST HARMONICS METHOD IN SPACE WITH TWO TIME VARIABLES I. Ye. Korotyeyev (*), M. Klytta (**), (*) University of Zielona Góra, Institute of Electrical Engineering, Podgórna50, 65-246 Zielona Góra, Poland, Tel. (+48 68) 3282 626, Fax (+48 68) 3254 615, E-mail: I.Korotyeyev@iee.uz.zgora.pl. (**) University of Applied Sciences Mittelhessen, Department of Electrotechnics and Information Technology, Wiesenstrasse 14, 35-390 Giessen, Germany, Tel. (+49 641) 309 1930, Fax. - 309 2941, E-mail: Marius.Klytta@ei.thm.de. A procedure for the synthesis of control signals for three phase matrix frequency converters is presented. The procedure is based on extension of the space of one time variable to the space with two time variables. An expansion of control signals in Fourier series is use. References 2, figure 1. Key words: control synthesis, matrix frequency converter, first harmonic method, two time variables. Let us consider a three phase matrix frequency converter (MFC) presented in Figure. The switches aAS … cCS shown in Figure are ideal. They are turned on and off periodically with durations defined by a matrix ( ) aA aB aC bA bB bC cA cB cC d d d t d d d d d d M . The best known strategies used for control of such MFC are developed [1]. It has been shown [2] that the above mentioned control strategy is not single-valued. In this article we consider method based on extension of the space of one time variable to the space with two time variables and control signals expansion in Fourier series. A synthesis of control signals is realized using their presentation as sum of steady components and first harmonics. Coupling between input and output voltages describes the equation ( )tV M E (1) and between output and input currents the relation ( )T otI M I , (2) where cos cos( 2 / 3) cos( 4 / 3) i i i E t E t E t E , cos( ) cos( 2 / 3 ) cos( 4 / 3 ) o L o L o L V t V t V t V , cos( ) cos( 2 / 3 ) cos( 4 / 3 ) i i i I t I t I t I , cos( ) cos( 2 / 3 ) cos( 4 / 3 ) o L o o L o L I t I t I t I are vectors of input and output voltages and currents with and L as frequencies of input and output signals. Since the above cosines functions depend on three variables , L and t identically, we could replace them in the following way t , t , L . (3) Let us assume that coefficients of the matrix ( )tM are periodical and are described by steady components and first harmonics 0 1 1 1 1sin( ) cos( )k k k km m m t m t , where coefficients 0 1km , 1 s km , 1 c km might depend on time , 1,2,3k . In order to find these coefficients let us multiply first row of matrix ( )tM by the vector E and expand the result in Fourier series. We obtain in this way four equations. Two further equations result using conditions that input circuits should not be shorted and output circuits cannot be opened, i.e. ( )t1 M 1 (where 1 is the unit vector). After solving of these equations we get 0 11 1 3 m ; 13 1 11 6 ( 3 ) 2 (3 3) sec ( 3 3 )(3 3) s s m tg cs m tg ; 1 13 11 2( 3 cos sin )( 3 ) 3 3 cos 2 3sin 2 s c cs m seq m . The variables 1cs , 2cs and 3cs in above coefficients are elements of the vector V and depend on time . We can determine all other coefficients nkm in the same way. These coefficients depend on 23 sm , 2cs and 33 sm , 3cs . In order to find the coefficients 13 sm , 23 sm and 33 sm one uses (2) and after additional analyses they could be chosen as follows 3 / 3s n nm cs . After substitution one obtain the following expressions A B C a b c aAS bAS cAS aBS bBS cBS aCS bCS cCS 1e 2v 2e 3e 1v 3v oi 3 1i 2i 3i oi1 oi2 mailto:I.Korotyeyev:@iee.uz.zgora.pl mailto:Marius.Klytta:@ei.thm.de 56 ISSN 1607-7970. . 2012. 2 11 1 2 cos( ) cos( ) 3( 1) sin( ) / 3m q t t ; 12 1 cos( ) (3 2) cos( ) 3( 2) sin( ) / 3m q t t ; 13 1 cos( ) (3 4)cos( ) 3 sin( ) / 3m q t t . Other coefficients can be written by shifting the argument of cosines in the following way 2 / 3 , 4 / 3 . Then first elements of the vectors of the output voltage V calculated by (1) have the form cos 3( 1)sin cos( )q , and the input current I calculated by (2) is as follows cos( )q cos( ) 3( 1)sin( )t t . Other elements of the vectors V and I are obtained by similar shifting of arguments 2 / 3 , 4 / 3 and 2 / 3 , 4 / 3 . We can transform parts of these expressions in the following way 2cos 3( 1)sin 1 3 1 cos( ) , cos( ) 3( 1)sin( )t t 21 3 1 cos( )t , where 3( 1)arctg . Multiplying input and output vectors of current and voltage one finds input and output power of MFC 23 1 3 1 cos( ) cos( ) / 2q . In order to obtain signals in the space of one time variable we use the substitution opposite to (3). The synthesized control could change both the amplitude of output voltages and the amplitude and phase shift of input currents. The power factor equal 1.0 could be obtained. It should be noted that obtained expressions could be also transformed in expressions given in [1]. 1. Alesina A., Venturini M. Solid State Power Conversion: A Fourier Analysis Approach to Generalized Transformer Synthesis // IEEE Transactions on Circuits and Systems. 1981. Vol. 28. No. 4. Pp. 319–330. 2. Korotyeyev I.Ye., Klytta M. Solution of equations defining transformation rules of three phase matrix frequency converters // Tekhnichna Elektrodynamika. Tematychnyi vypusk " Sylova elektronika ta energoefektyvnist". 2011. Vol. 1. Pp. 154–156. . (*), . (**) (*) , , . , 50, 65-246, . , . . (+48 68) 3282 626, Fax (+48 68) 3254 615, E-mail: I.Korotyeyev@iee.uz.zgora.pl (**)University of Applied Sciences Mittelhessen, 14, 35-390, . , Te . (+49 641) 309 1930, . - 309 2941, E-mail: Marius.Klytta@ei.thm.de. c 3- . . . . 2, . 1. : , , , . 3- . , . , , . , 50, 65-246, . , . (+48 68) 3282 626, Fax (+48 68) 3254 615, E-mail: I.Korotyeyev@iee.uz.zgora.pl (**)University of Applied Sciences Mittelhessen, 14, 35-390, . , Te . (+49 641) 309 1930, . - 309 2941, E-mail: Marius.Klytta@ei.thm.de. 3- . . - . . 2, c. 1. : , , , . 20.12.2011 Received 20.12.2011 mailto:I.Korotyeyev:@iee.uz.zgora.pl mailto:Marius.Klytta:@ei.thm.de mailto:I.Korotyeyev:@iee.uz.zgora.pl mailto:Marius.Klytta:@ei.thm.de