Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи

В статті описано вирішення задачі прогнозування сумарного електричного навантаження (СЕН) електроенергетичної системи (ЕЕС) двома способами. Перший (для побудови математичної моделі) використовує параметричний метод аналізу та прогнозування нестаціонарних часових рядів, другий – нейро-фаззі мережі....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Технічна електродинаміка
Дата:2013
Автори: Черненко, П.О., Мартинюк, О.В., Попов, С.В., Бодянський, Є.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут електродинаміки НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/62310
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи / П.О. Черненко, О.В. Мартинюк, С.В. Попов, Є.В. Бодянський // Технічна електродинаміка. — 2013. — № 3. — С. 61–72. — Бібліогр.: 15 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-62310
record_format dspace
spelling Черненко, П.О.
Мартинюк, О.В.
Попов, С.В.
Бодянський, Є.В.
2014-05-19T19:54:34Z
2014-05-19T19:54:34Z
2013
Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи / П.О. Черненко, О.В. Мартинюк, С.В. Попов, Є.В. Бодянський // Технічна електродинаміка. — 2013. — № 3. — С. 61–72. — Бібліогр.: 15 назв. — укр.
1607-7970
https://nasplib.isofts.kiev.ua/handle/123456789/62310
621.311:681.3
В статті описано вирішення задачі прогнозування сумарного електричного навантаження (СЕН) електроенергетичної системи (ЕЕС) двома способами. Перший (для побудови математичної моделі) використовує параметричний метод аналізу та прогнозування нестаціонарних часових рядів, другий – нейро-фаззі мережі. Наведено адитивну математичну модель СЕН, алгоритми моделювання та прогнозування її складових. Описано архітектуру нейро-фаззі мережі та алгоритм її навчання. Для адекватного порівняння результатів виконано прогнозування СЕН ЕЕС на тижневий інтервал упередження з використанням єдиної вихідної інформації. Показано переваги ієрархічного вирішення задачі короткострокового прогнозування сумарного електричного навантаження ЕЕС із використанням математичних моделей СЕН обласних енергосистем. Сформульовано шляхи подальшого підвищення точності та надійності результатів короткострокового прогнозування СЕН ЕЕС.
В статье приведено описание решения задачи краткосрочного прогнозирования суммарной электрической загрузки электроенергетической системы (ЭЭС) двумя способами. Первый (для построения математической модели) использует параметрический метод анализа и прогнозирования нестационарных временных рядов. Второй – нейро-фаззи сеть. Приведены аддитивная математическая модель СЭН, алгоритмы моделирования и прогнозирования ее составляющих. Описаны архитектура нейро-фаззи сети и алгоритм ее обучения. Для адекватного сравнения результатов выполнено прогнозирование СЭН ЭЭС на недельный интервал упреждения с использованием единой исходной информации. Показаны преимущества иерархического решения задачи краткосрочного прогнозирования суммарной электрической нагрузки ЭЭС с использованием математических моделей СЭН областных энергосистем. Сформулированы пути дальнейшего повышения точности и надежности результатов краткосрочного прогнозирования СЭН ЭЭС.
This paper deals with the solution of the problem of short-term forecasting of the power system active load (PSAL) in two ways. First, to build a mathematical model using parametric method of analysis and prediction of non-stationary time series. The second - the neuro-fuzzy network. The additive mathematical model of PSAL, algorithms of modelling and prediction of its components are presented. The architecture of the neuro-fuzzy network and learning algorithm are described. With the purpose of adequate comparing of results, using the same informations, the forecasting of PSAL for a week are performed. The advantages of hierarchical problem solving short-term forecasting electrical load of united power systems with using the mathematical models load of regional power systems are demonstrated. The ways of further improving of the accuracy and reliability results of the short-term forecasting of PSAL are formulated.
uk
Інститут електродинаміки НАН України
Технічна електродинаміка
Електроенергетичні системи та устаткування
Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
Сравнительный анализ двух подходов к решению задачи краткосрочного прогнозирования суммарной электрической нагрузки электроэнергетической системы
Comparative analysis of two approaches to solving the problem of short-term forecasting of the total electrical load of a power system
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
spellingShingle Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
Черненко, П.О.
Мартинюк, О.В.
Попов, С.В.
Бодянський, Є.В.
Електроенергетичні системи та устаткування
title_short Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
title_full Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
title_fullStr Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
title_full_unstemmed Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
title_sort порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи
author Черненко, П.О.
Мартинюк, О.В.
Попов, С.В.
Бодянський, Є.В.
author_facet Черненко, П.О.
Мартинюк, О.В.
Попов, С.В.
Бодянський, Є.В.
topic Електроенергетичні системи та устаткування
topic_facet Електроенергетичні системи та устаткування
publishDate 2013
language Ukrainian
container_title Технічна електродинаміка
publisher Інститут електродинаміки НАН України
format Article
title_alt Сравнительный анализ двух подходов к решению задачи краткосрочного прогнозирования суммарной электрической нагрузки электроэнергетической системы
Comparative analysis of two approaches to solving the problem of short-term forecasting of the total electrical load of a power system
description В статті описано вирішення задачі прогнозування сумарного електричного навантаження (СЕН) електроенергетичної системи (ЕЕС) двома способами. Перший (для побудови математичної моделі) використовує параметричний метод аналізу та прогнозування нестаціонарних часових рядів, другий – нейро-фаззі мережі. Наведено адитивну математичну модель СЕН, алгоритми моделювання та прогнозування її складових. Описано архітектуру нейро-фаззі мережі та алгоритм її навчання. Для адекватного порівняння результатів виконано прогнозування СЕН ЕЕС на тижневий інтервал упередження з використанням єдиної вихідної інформації. Показано переваги ієрархічного вирішення задачі короткострокового прогнозування сумарного електричного навантаження ЕЕС із використанням математичних моделей СЕН обласних енергосистем. Сформульовано шляхи подальшого підвищення точності та надійності результатів короткострокового прогнозування СЕН ЕЕС. В статье приведено описание решения задачи краткосрочного прогнозирования суммарной электрической загрузки электроенергетической системы (ЭЭС) двумя способами. Первый (для построения математической модели) использует параметрический метод анализа и прогнозирования нестационарных временных рядов. Второй – нейро-фаззи сеть. Приведены аддитивная математическая модель СЭН, алгоритмы моделирования и прогнозирования ее составляющих. Описаны архитектура нейро-фаззи сети и алгоритм ее обучения. Для адекватного сравнения результатов выполнено прогнозирование СЭН ЭЭС на недельный интервал упреждения с использованием единой исходной информации. Показаны преимущества иерархического решения задачи краткосрочного прогнозирования суммарной электрической нагрузки ЭЭС с использованием математических моделей СЭН областных энергосистем. Сформулированы пути дальнейшего повышения точности и надежности результатов краткосрочного прогнозирования СЭН ЭЭС. This paper deals with the solution of the problem of short-term forecasting of the power system active load (PSAL) in two ways. First, to build a mathematical model using parametric method of analysis and prediction of non-stationary time series. The second - the neuro-fuzzy network. The additive mathematical model of PSAL, algorithms of modelling and prediction of its components are presented. The architecture of the neuro-fuzzy network and learning algorithm are described. With the purpose of adequate comparing of results, using the same informations, the forecasting of PSAL for a week are performed. The advantages of hierarchical problem solving short-term forecasting electrical load of united power systems with using the mathematical models load of regional power systems are demonstrated. The ways of further improving of the accuracy and reliability results of the short-term forecasting of PSAL are formulated.
issn 1607-7970
url https://nasplib.isofts.kiev.ua/handle/123456789/62310
citation_txt Порівняльний аналіз двох підходів до вирішення задачі короткострокового прогнозування сумарного електричного навантаження електроенергетичної системи / П.О. Черненко, О.В. Мартинюк, С.В. Попов, Є.В. Бодянський // Технічна електродинаміка. — 2013. — № 3. — С. 61–72. — Бібліогр.: 15 назв. — укр.
work_keys_str_mv AT černenkopo porívnâlʹniianalízdvohpídhodívdoviríšennâzadačíkorotkostrokovogoprognozuvannâsumarnogoelektričnogonavantažennâelektroenergetičnoísistemi
AT martinûkov porívnâlʹniianalízdvohpídhodívdoviríšennâzadačíkorotkostrokovogoprognozuvannâsumarnogoelektričnogonavantažennâelektroenergetičnoísistemi
AT popovsv porívnâlʹniianalízdvohpídhodívdoviríšennâzadačíkorotkostrokovogoprognozuvannâsumarnogoelektričnogonavantažennâelektroenergetičnoísistemi
AT bodânsʹkiiêv porívnâlʹniianalízdvohpídhodívdoviríšennâzadačíkorotkostrokovogoprognozuvannâsumarnogoelektričnogonavantažennâelektroenergetičnoísistemi
AT černenkopo sravnitelʹnyianalizdvuhpodhodovkrešeniûzadačikratkosročnogoprognozirovaniâsummarnoiélektričeskoinagruzkiélektroénergetičeskoisistemy
AT martinûkov sravnitelʹnyianalizdvuhpodhodovkrešeniûzadačikratkosročnogoprognozirovaniâsummarnoiélektričeskoinagruzkiélektroénergetičeskoisistemy
AT popovsv sravnitelʹnyianalizdvuhpodhodovkrešeniûzadačikratkosročnogoprognozirovaniâsummarnoiélektričeskoinagruzkiélektroénergetičeskoisistemy
AT bodânsʹkiiêv sravnitelʹnyianalizdvuhpodhodovkrešeniûzadačikratkosročnogoprognozirovaniâsummarnoiélektričeskoinagruzkiélektroénergetičeskoisistemy
AT černenkopo comparativeanalysisoftwoapproachestosolvingtheproblemofshorttermforecastingofthetotalelectricalloadofapowersystem
AT martinûkov comparativeanalysisoftwoapproachestosolvingtheproblemofshorttermforecastingofthetotalelectricalloadofapowersystem
AT popovsv comparativeanalysisoftwoapproachestosolvingtheproblemofshorttermforecastingofthetotalelectricalloadofapowersystem
AT bodânsʹkiiêv comparativeanalysisoftwoapproachestosolvingtheproblemofshorttermforecastingofthetotalelectricalloadofapowersystem
first_indexed 2025-12-07T17:35:40Z
last_indexed 2025-12-07T17:35:40Z
_version_ 1850871844245078016