Hyperplanar Webs and Euler Equations
We find necessary and sufficient conditions for the foliation defined by level sets of a function f(x1, . . . , xn) to be totally geodesic in a torsion-free connection and apply them to find the conditions for d-webs of hypersurfaces to be geodesic, and in the case of flat connections, for d-webs (d...
Gespeichert in:
| Datum: | 2009 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2009
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/6308 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Hyperplanar Webs and Euler Equations / V.V. Goldberg, V.V. Lychagin // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 276-287. — Бібліогр.: 1 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We find necessary and sufficient conditions for the foliation defined by level sets of a function f(x1, . . . , xn) to be totally geodesic in a torsion-free connection and apply them to find the conditions for d-webs of hypersurfaces to be geodesic, and in the case of flat connections, for d-webs (d ≥ n + 1) of hypersurfaces to be hyperplanar webs. These conditions are systems of generalized Euler equations, and for flat connections we give an explicit construction of their solutions.
|
|---|---|
| ISSN: | 1815-2910 |