Kahler Geometry and Burgers' Vortices

We study the Navier-Stokes and Euler equations of incompressible hydrodynamics. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation in two spatial dimensions using Monge-Ampere structures. In two dimensional flo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Roulstone, I., Banos, B., Gibbon, J.D., Roubtsov, V.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/6310
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Kahler Geometry and Burgers' Vortices / I. Roulstone, B. Banos, J.D. Gibbon, V.N. Roubtsov // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 303-321. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study the Navier-Stokes and Euler equations of incompressible hydrodynamics. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation in two spatial dimensions using Monge-Ampere structures. In two dimensional flows where the Laplacian of the pressure is positive, a Kahler geometry is described on the phase space of the fluid; in regions where the Laplacian of the pressure is negative, a product structure is described. These structures can be related to the ellipticity and hyperbolicity (respectively) of a Monge-Ampere equation. We then show how this structure can be extended to a class of canonical vortex structures in three dimensions.
ISSN:1815-2910