Kahler Geometry and Burgers' Vortices
We study the Navier-Stokes and Euler equations of incompressible hydrodynamics. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation in two spatial dimensions using Monge-Ampere structures. In two dimensional flo...
Збережено в:
| Дата: | 2009 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2009
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/6310 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Kahler Geometry and Burgers' Vortices / I. Roulstone, B. Banos, J.D. Gibbon, V.N. Roubtsov // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 303-321. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-6310 |
|---|---|
| record_format |
dspace |
| spelling |
Roulstone, I. Banos, B. Gibbon, J.D. Roubtsov, V.N. 2010-02-23T14:32:25Z 2010-02-23T14:32:25Z 2009 Kahler Geometry and Burgers' Vortices / I. Roulstone, B. Banos, J.D. Gibbon, V.N. Roubtsov // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 303-321. — Бібліогр.: 30 назв. — англ. 1815-2910 https://nasplib.isofts.kiev.ua/handle/123456789/6310 We study the Navier-Stokes and Euler equations of incompressible hydrodynamics. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation in two spatial dimensions using Monge-Ampere structures. In two dimensional flows where the Laplacian of the pressure is positive, a Kahler geometry is described on the phase space of the fluid; in regions where the Laplacian of the pressure is negative, a product structure is described. These structures can be related to the ellipticity and hyperbolicity (respectively) of a Monge-Ampere equation. We then show how this structure can be extended to a class of canonical vortex structures in three dimensions. en Інститут математики НАН України Геометрія, топологія та їх застосування Праці міжнародної конференції "Геометрія в Одесі - 2008" Kahler Geometry and Burgers' Vortices Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Kahler Geometry and Burgers' Vortices |
| spellingShingle |
Kahler Geometry and Burgers' Vortices Roulstone, I. Banos, B. Gibbon, J.D. Roubtsov, V.N. Геометрія, топологія та їх застосування Праці міжнародної конференції "Геометрія в Одесі - 2008" |
| title_short |
Kahler Geometry and Burgers' Vortices |
| title_full |
Kahler Geometry and Burgers' Vortices |
| title_fullStr |
Kahler Geometry and Burgers' Vortices |
| title_full_unstemmed |
Kahler Geometry and Burgers' Vortices |
| title_sort |
kahler geometry and burgers' vortices |
| author |
Roulstone, I. Banos, B. Gibbon, J.D. Roubtsov, V.N. |
| author_facet |
Roulstone, I. Banos, B. Gibbon, J.D. Roubtsov, V.N. |
| topic |
Геометрія, топологія та їх застосування Праці міжнародної конференції "Геометрія в Одесі - 2008" |
| topic_facet |
Геометрія, топологія та їх застосування Праці міжнародної конференції "Геометрія в Одесі - 2008" |
| publishDate |
2009 |
| language |
English |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We study the Navier-Stokes and Euler equations of incompressible hydrodynamics. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation in two spatial dimensions using Monge-Ampere structures. In two dimensional flows where the Laplacian of the pressure is positive, a Kahler geometry is described on the phase space of the fluid; in regions where the Laplacian of the pressure is negative, a product structure is described. These structures can be related to the ellipticity and hyperbolicity (respectively) of a Monge-Ampere equation. We then show how this structure can be extended to a class of canonical vortex structures in three dimensions.
|
| issn |
1815-2910 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/6310 |
| citation_txt |
Kahler Geometry and Burgers' Vortices / I. Roulstone, B. Banos, J.D. Gibbon, V.N. Roubtsov // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 303-321. — Бібліогр.: 30 назв. — англ. |
| work_keys_str_mv |
AT roulstonei kahlergeometryandburgersvortices AT banosb kahlergeometryandburgersvortices AT gibbonjd kahlergeometryandburgersvortices AT roubtsovvn kahlergeometryandburgersvortices |
| first_indexed |
2025-12-07T19:17:59Z |
| last_indexed |
2025-12-07T19:17:59Z |
| _version_ |
1850878281222455296 |