Diamond-max ceramics bonding phase composites – phases and microstructure analysis

The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения
Datum:2011
Hauptverfasser: Jaworska, L., Klimczyk, P., Putyra, P., Rozmus, M., Bucko, M., Morgiel, J., Stobierski, L.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України 2011
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/63234
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Diamond-max ceramics bonding phase composites – phases and microstructure analysis / L. Jaworska, P. Klimczyk, P. Putyra, M. Rozmus, M. Bucko, J. Morgiel, L. Stobierski // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2011. — Вип. 14. — С. 202-207. — Бібліогр.: 6 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-63234
record_format dspace
spelling Jaworska, L.
Klimczyk, P.
Putyra, P.
Rozmus, M.
Bucko, M.
Morgiel, J.
Stobierski, L.
2014-05-31T06:41:13Z
2014-05-31T06:41:13Z
2011
Diamond-max ceramics bonding phase composites – phases and microstructure analysis / L. Jaworska, P. Klimczyk, P. Putyra, M. Rozmus, M. Bucko, J. Morgiel, L. Stobierski // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2011. — Вип. 14. — С. 202-207. — Бібліогр.: 6 назв. — рос.
2223-3938
https://nasplib.isofts.kiev.ua/handle/123456789/63234
621.9:621.762-539.27
The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase composition and microstructural study of the original compacts and the composites made by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами Ti3₃iC₂ і Cr₂AlC отримували з використанням методу само поширюваного високотемпературного синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і температури з метою подальшої консолідації структури шляхом спікання. Процес спікання здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і скануючої електронної мікроскопії (SEM).
Одна из возможностей повышения термостойкости поликристаллических материалов на основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без кобальта с фазами Ti3₃iC₂ и Cr₂AlC получали с использованием метода самораспространяющегося высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной микроскопии (SEM).
This work was supported in the 2007-2013 Innovative Economy Programme under the National Strategic Reference Framework EU, priority axis 1, section 1.1.3 N UDA-POIG.01.03.01-12-024/08-00, 26 March 2009.
ru
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения
Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора
Diamond-max ceramics bonding phase composites – phases and microstructure analysis
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Diamond-max ceramics bonding phase composites – phases and microstructure analysis
spellingShingle Diamond-max ceramics bonding phase composites – phases and microstructure analysis
Jaworska, L.
Klimczyk, P.
Putyra, P.
Rozmus, M.
Bucko, M.
Morgiel, J.
Stobierski, L.
Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора
title_short Diamond-max ceramics bonding phase composites – phases and microstructure analysis
title_full Diamond-max ceramics bonding phase composites – phases and microstructure analysis
title_fullStr Diamond-max ceramics bonding phase composites – phases and microstructure analysis
title_full_unstemmed Diamond-max ceramics bonding phase composites – phases and microstructure analysis
title_sort diamond-max ceramics bonding phase composites – phases and microstructure analysis
author Jaworska, L.
Klimczyk, P.
Putyra, P.
Rozmus, M.
Bucko, M.
Morgiel, J.
Stobierski, L.
author_facet Jaworska, L.
Klimczyk, P.
Putyra, P.
Rozmus, M.
Bucko, M.
Morgiel, J.
Stobierski, L.
topic Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора
topic_facet Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора
publishDate 2011
language Russian
container_title Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения
publisher Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
format Article
description The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase composition and microstructural study of the original compacts and the composites made by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами Ti3₃iC₂ і Cr₂AlC отримували з використанням методу само поширюваного високотемпературного синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і температури з метою подальшої консолідації структури шляхом спікання. Процес спікання здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і скануючої електронної мікроскопії (SEM). Одна из возможностей повышения термостойкости поликристаллических материалов на основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без кобальта с фазами Ti3₃iC₂ и Cr₂AlC получали с использованием метода самораспространяющегося высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной микроскопии (SEM).
issn 2223-3938
url https://nasplib.isofts.kiev.ua/handle/123456789/63234
citation_txt Diamond-max ceramics bonding phase composites – phases and microstructure analysis / L. Jaworska, P. Klimczyk, P. Putyra, M. Rozmus, M. Bucko, J. Morgiel, L. Stobierski // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2011. — Вип. 14. — С. 202-207. — Бібліогр.: 6 назв. — рос.
work_keys_str_mv AT jaworskal diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis
AT klimczykp diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis
AT putyrap diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis
AT rozmusm diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis
AT buckom diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis
AT morgielj diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis
AT stobierskil diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis
first_indexed 2025-11-26T01:48:52Z
last_indexed 2025-11-26T01:48:52Z
_version_ 1850607014625935360
fulltext Выпуск 14. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ 202 УДК 621.9:621.762-539.27 L. Jaworska1, Prof., Ph. D., D. Sc.; P. Klimczyk1, Ph. D.; P. Putyra1, Ph. D.; M. Rozmus1, Ph. D.; M. Bucko2, Prof., Ph.D., D. Sc., J. Morgiel3, Prof., Ph.D., D. Sc., L. Stobierski2, Prof., Ph. D, D. Sc. 1Institute of Advanced Manufacturing Technology, Krakow, Poland 2Department of Advanced Ceramics, University of Science and Technology, Krakow, Poland 3Institute of Metallurgy and Materials Sciences, Polish Academy of Sciences, Krakow, Poland DIAMOND-MAX CERAMICS BONDING PHASE COMPOSITES – PHASES AND MICROSTRUCTURE ANALYSIS The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3SiC2 і Cr2AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase composition and microstructural study of the original compacts and the composites made by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Key words: sintering, composite material, diamond, binding phase, phase composition, microstructure. Introduction Commercially available polycrystalline diamond compacts (PCD), consisting of a polycrystalline diamond-cobalt layer on a WC-Co substrate are used in a drilling and machining applications. Cobalt phase presence in diamonds layer has strong influence on the thermal resistance decreasing. Thermal stability of a PCD material can be defined as the resistance to graphitization in an inert atmosphere, at elevated temperatures. One of the possibilities to increase the thermal resistance of PCD materials is to reduce of the cobalt content. Another is the diamond compacts manufacturing with non-cobalt bonding phase. They have been referred to as thermally stable polycrystalline diamond composite TSP sometimes as TSDC. TSP is produced by using silicon carbide binder or leaching the cobalt component from the surface layers of PCD. Diamond- silicon carbide composites find a wide use in industry application. The most popular method of obtaining this composite is infiltration of diamond with Si and consequent reaction of Si with the carbon from diamond. During the sintering process silicon forms SiC carbide. The SiC formation is connected with volume increase, which could result in blocking of pore channels what has influence on materials porosity and roughness of the tools surface [1]. The earliest known product in this type of material was De Beer’s (now Element Six) Syndax 3. This material is characterized the thermal stability up to 1200 °C, high value of the fracture toughness but lower strength and wear resistance than PCD with cobalt. Residual silicon was observed in these samples, it can be concluded that the reactive bonding-sintering process did not proceed to completion [2]. Cuttability of tool materials it is very important property, especially for diamond because diamond it is non-electrical conductive. For diamond with cobalt bonding phase the electro-discharge method of cutting is widely using. The traditional mechanical methods of cutting are not efficient. Another is the preparing of material with non-metallic bonding phase without negative influences on diamond graphitization and with compatibility of the thermal expansion coefficient to the diamond coefficient. Therefore, a new material characterized by at least as good wetting of diamond but producing synthesis reaction products both less brittle and chemically stable at even higher temperatures then those containing cobalt would be of interest. PCDs with a silicon bonding phase may be used only in drilling applications. In such a situation, the development of new bonding phases is very much needed. There is some new information about application minerals bonding phases for example CaCO3 [3]. The aim of this study is to analyze the possibility of the application of SHS-synthesized powders from Ti-Si-C and Cr-Al-C systems as a binding phase for PCDs. Ternary compounds (MAX phases) Mn + 1AXn, n = 1–3, where M – an rare transition metal; A – an element of the A group such as IIIA or IVA; X – carbon or nitrogen) have been studied since the 1960s. Ti3SiC2 based on MN+1AXN «nanolami- nates» might make an interesting bonding phase alternative. It is stable up to 1400–1450 °C [4], has a РАЗДЕЛ 2. ИНСТРУМЕНТАЛЬНЫЕ, КОНСТРУКЦИОННЫЕ И ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ АЛМАЗА И КУБИЧЕСКОГО НИТРИДА БОРА 203 hexagonal P63/mmc layered structure and combines the high stiffness of ceramic materials with some ductility characteristic for metals. Cr2AlC, one of the M2AX phases (also known as the 211 phase), has relatively low hardness (3.5–5.5 GPa), high elastic modulus (278–288 GPa), good mechanical performance at room temperature (flexural strength of 378–494 MPa and compressive strength of 625–1159 MPa), good electrical ((1.4–2.3) × 106 Ω− 1 m− 1) and thermal conductivity (17.5–22.5 W/(m×K)), excellent oxidation resistance at 800–1300 °C and corrosion resistance against molten Na2SO4 at 900–1000 °C [4]. Generally, Mn+1AXn phases possess high stiffness; are machinable; exhibit good damage tolerance, excellent thermal shock resistance, good corrosion resistance, good thermal and electrical conductivity, good oxidation and/or corrosion resistance, and excellent mechanical performance both at room temperature and high temperatures. The latter properties enable MAX phases to fill most voids between compacted diamond or cBN crystallites [5, 6]. It is possible to replace the ductile cobalt bonding phase. Ti3SiC2 or Cr2AlC materials fill the voids between diamond particles and because their ductile properties preserve the isostatic conditions in sintered diamond [5]. Removal of voids is crucial, as otherwise the diamond particle is only locally bound with the binder or second diamond, keeping the diamond in a compressive force state, i. e. preserving diamond stability. The simultaneous presence of multiple voids leads to a tensile force state on the diamond surface, leading to its local graphitization. Experimental The SHS bonding phases were produced from stoichiometric mixtures of powders. Purity and grain size of the element powders are shown in Table. Powder characteristics Element Purity , % Grain size, μm Silicon* 99.80 0–60 Titanium (Goodfellow) 99.50 < 45 Graphite (Aldrich) 99.99 < 45 Chromium (AEE) 99.95 < 45 Aluminium (NPA, Kawina) 99.50 Submicrometer *Obtained by milling of silicon waste chips produced by ZA Tarnow, Poland The homogeneity of these mixtures was ascertained through extensive mixing of their components for 12 hours in a rotary-vibratory mill with Teflon balls, suspended in anhydrous isopropyl alcohol. Drying was carried out during mixing. Next, the powders were formed into discs by pressing in a steel matrix, and synthesized using the SHS technique. The reaction was begun at up to 1500 °C, using a graphite crucible with a graphite foil lining in an argon-filled chamber. After ignition by raising part of material to high tem- perature, the front of reaction is propagated across the crucible, resulting in full transformation of the loaded material. The products of the SHS reaction were crushed in an Abbich mortar to a powder with grain size up to 0.5 mm, and then milled in a rotary-vibratory mill with WC grinding media, in anhydrous isopropyl alco- hol, to a powder with a specific surface area up to 10 m2/g. Mixtures were prepared containing 80 mass % diamond (3–6 μm MDA, Element Six), 20 mass % Ti3SiC2. Diamond powders of 3–6 μm (MDA, Element Six) mechanically mixed with 20 mass% of bonding phase powders from the Cr-Al-C system were also obtained. Density was measured using the hydrostatic method. Phase composition of the SHS powders and sin- tered bodies was identified by X-ray diffraction analysis, based on the ICDD database. XRD measurements were taken using an X¢Pert Pro system (Panalytical) with monochromatic CuKα1 radiation. Microstructure investigations were performed using transmission (Tecnai FEG 200 kV) microscope. The resulting mixture was formed into discs (Æ = 15 mm, h = 5 mm) by pressing in a steel matrix under pressure of 200 MPa. Be- fore sintering, powders were baked at 600 ºC for 30 min under pressure 0.8 Pa. Samples were heated using an assembly equipped with an internal graphite heater. Compacts were sintered at pressure 8.0±0.2 GPa and temperature 1920±50 °C in a Bridgman-type toroid high pressure apparatus. Results and discussion X-ray analysis of the Ti-Si-C SHS product shows the presence of 47.1 vol. % Ti3SiC2, TiSi2, TiC and SiC. XRD patterns are shown in fig. 1. Выпуск 14. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ 204 X-ray analysis of the second SHS product from the Cr-Al-C system (fig. 2) shows the presence of 85.2 vol. % Cr2AlC and 14.8 vol. % Cr7C3. Fig. 1. X-ray pattern of SHS product for the Ti-Si-C system Fig 2. X-ray pattern of SHS product for the Cr-Al-C system РАЗДЕЛ 2. ИНСТРУМЕНТАЛЬНЫЕ, КОНСТРУКЦИОННЫЕ И ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ АЛМАЗА И КУБИЧЕСКОГО НИТРИДА БОРА 205 Fig. 3. X-ray pattern of diamond composite with the bonding phase from the Ti-Si-C system Fig. 4. X-ray pattern of diamond composite with the bonding phase from the Cr-Al-C system Выпуск 14. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ 206 X-Ray analysis and TEM microscopy confirmed the fine crystalline character of the binding material. Fig. 1 shows that the bonding has a multi-phase character, containing SiC, TiC and possibly TiSi2 crystallites. The presence of a ductile Ti3SiC2 bonding phase in the HP–HT process is especially important in the first stage of the sintering process, when the pressure is generated. The stress distribution in the sintering samples is dependent on the bonding phase distribution and plasticity. The second stage of the HP- HT process is sintering. If the sample is not under pseudo-isostatic conditions, then graphite appears. Hexagonal Ti3SiC2 is a low-temperature phase stable below 1400–1450 ºC. Above these temperatures, decomposition of Ti3SiC2 occurs and phase reactions take place with the carbon from the diamond (fig. 3). The ductile behavior of the Ti3SiC2 phase helps to fill most of the larger voids between diamond grains, ensuring thermodynamic conditions for maintaining the presence of diamond, i. e. limiting major graphite presence in the final composite. a b Fig. 5. TEM image of: a – diamond-20 mass % Ti3SiC2 composite; b – diamond-20 mass % Cr2AlC composite (area of the bonding phase). The diamond crystallites are characterized by their light contrast Cr2AlC is a more thermally stable material than Ti3SiC2. This has an influence on the graphitization process for a diamond-Cr2AlC composite. Such materials are characterized by residual porosity, dark places along diamond-bonding phase border (fig.5, b). The Cr2AlC phase is insufficient to fill most of the larger voids between diamond grains but there is a graphite presence in the final composite (fig. 4). The amount of graphite in this composite, calculated from the X-ray diffraction, is 6.1%. For both systems, the SHS products are multi- composite compounds. Bonding phases for both composite are composed of fine crystallites. Conclusions 1. The ductile behaviour of the Ti3SiC2 phase helped to fill most of the larger voids between diamond grains, ensuring thermodynamic conditions for maintaining the presence of diamond, i.e. limiting major graphite presence in the final composite. During the sintering process there is Ti3SiC2 decomposition and carbides, silicides forming. 2. The main factor lowering the hardness of diamond with a binder from the Cr-Al-C system is the presence of graphite. This indicates a graphitization process during sintering and the presence of tensile stresses in the sintering mixture. For this composite there is residual porosity in the composite. 3. On the sintering process result the significant influence has the temperature of MAX decomposition. Acknowledgment This work was supported in the 2007-2013 Innovative Economy Programme under the National Strategic Reference Framework EU, priority axis 1, section 1.1.3 N UDA-POIG.01.03.01-12-024/08-00, 26 March 2009. РАЗДЕЛ 2. ИНСТРУМЕНТАЛЬНЫЕ, КОНСТРУКЦИОННЫЕ И ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ АЛМАЗА И КУБИЧЕСКОГО НИТРИДА БОРА 207 Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами Ti3SiC2 і Cr2AlC отримували з використанням методу само поширюваного високотемпературного синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і температури з метою подальшої консолідації структури шляхом спікання. Процес спікання здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і скануючої електронної мікроскопії (SEM). Ключові слова: спікання, композиційний матеріал, алмаз, зв’язувальна фаза, фазовий склад, мікроструктура. Одна из возможностей повышения термостойкости поликристаллических материалов на основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без кобальта с фазами Ti3SiC2 и Cr2AlC получали с использованием метода самораспространяющегося высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной микроскопии (SEM). Ключевые слова: спекание, композиционный материал, алмаз, связующая фаза, фазовый состав, микроструктура. References 1. Mlungwane K., Sigalas I.J., Hermann M. The development of a diamond –silicon carbide composite material // Industrial Diamond Review. – 2005. – N 4. – P. 62–65. 2. Boland J.N., Xing S.Li. Microstructural characterisation and wear behaviour of diamond composite materials // Materials. – ISSN 1996–1944. – 2010. – P. 1391–1419. 3. Westraadt J.E., Dubrovinskaia N. Thermally stable polycrystalline diamond sintered with calcium carbonate // Diamond Relat. Mater. – 2007. – N 16. – P. 1929–1935. 4. Barsoum M.W. MN+1AXN phases: new classes of solids thermodynamically stable nanolaminates // Prog. Solid State Chem. – 2000. – N 28. – P. 201–281. 5. Jaworska L., Szutkowska M., Morgiel J., Stobierski L., Lis J. Ti3SiC2 as a bonding phase in diamond composites // J. Mater. Sci. – 2001. – N 20. – P. 1783–1786. 6. Benko E., Klimczyk P., Mackiewicz S., Barr T.L., Piskorska E. cBN-Ti3SiC2 composites // Diamond Relat. Mater. – 2004. – Vol. 13, N 3. – P. 521–525. Поступила 07.06.11