Diamond-max ceramics bonding phase composites – phases and microstructure analysis
The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting comp...
Gespeichert in:
| Veröffentlicht in: | Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения |
|---|---|
| Datum: | 2011 |
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2011
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/63234 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Diamond-max ceramics bonding phase composites – phases and microstructure analysis / L. Jaworska, P. Klimczyk, P. Putyra, M. Rozmus, M. Bucko, J. Morgiel, L. Stobierski // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2011. — Вип. 14. — С. 202-207. — Бібліогр.: 6 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-63234 |
|---|---|
| record_format |
dspace |
| spelling |
Jaworska, L. Klimczyk, P. Putyra, P. Rozmus, M. Bucko, M. Morgiel, J. Stobierski, L. 2014-05-31T06:41:13Z 2014-05-31T06:41:13Z 2011 Diamond-max ceramics bonding phase composites – phases and microstructure analysis / L. Jaworska, P. Klimczyk, P. Putyra, M. Rozmus, M. Bucko, J. Morgiel, L. Stobierski // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2011. — Вип. 14. — С. 202-207. — Бібліогр.: 6 назв. — рос. 2223-3938 https://nasplib.isofts.kiev.ua/handle/123456789/63234 621.9:621.762-539.27 The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase composition and microstructural study of the original compacts and the composites made by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами Ti3₃iC₂ і Cr₂AlC отримували з використанням методу само поширюваного високотемпературного синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і температури з метою подальшої консолідації структури шляхом спікання. Процес спікання здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і скануючої електронної мікроскопії (SEM). Одна из возможностей повышения термостойкости поликристаллических материалов на основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без кобальта с фазами Ti3₃iC₂ и Cr₂AlC получали с использованием метода самораспространяющегося высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной микроскопии (SEM). This work was supported in the 2007-2013 Innovative Economy Programme under the National Strategic Reference Framework EU, priority axis 1, section 1.1.3 N UDA-POIG.01.03.01-12-024/08-00, 26 March 2009. ru Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора Diamond-max ceramics bonding phase composites – phases and microstructure analysis Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Diamond-max ceramics bonding phase composites – phases and microstructure analysis |
| spellingShingle |
Diamond-max ceramics bonding phase composites – phases and microstructure analysis Jaworska, L. Klimczyk, P. Putyra, P. Rozmus, M. Bucko, M. Morgiel, J. Stobierski, L. Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора |
| title_short |
Diamond-max ceramics bonding phase composites – phases and microstructure analysis |
| title_full |
Diamond-max ceramics bonding phase composites – phases and microstructure analysis |
| title_fullStr |
Diamond-max ceramics bonding phase composites – phases and microstructure analysis |
| title_full_unstemmed |
Diamond-max ceramics bonding phase composites – phases and microstructure analysis |
| title_sort |
diamond-max ceramics bonding phase composites – phases and microstructure analysis |
| author |
Jaworska, L. Klimczyk, P. Putyra, P. Rozmus, M. Bucko, M. Morgiel, J. Stobierski, L. |
| author_facet |
Jaworska, L. Klimczyk, P. Putyra, P. Rozmus, M. Bucko, M. Morgiel, J. Stobierski, L. |
| topic |
Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора |
| topic_facet |
Инструментальные, конструкционные и функциональные материалы на основе алмаза и кубического нитрида бора |
| publishDate |
2011 |
| language |
Russian |
| container_title |
Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения |
| publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
| format |
Article |
| description |
The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase composition and microstructural study of the original compacts and the composites made by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами Ti3₃iC₂ і Cr₂AlC отримували з використанням методу само поширюваного високотемпературного синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і температури з метою подальшої консолідації структури шляхом спікання. Процес спікання здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і скануючої електронної мікроскопії (SEM).
Одна из возможностей повышения термостойкости поликристаллических материалов на основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без кобальта с фазами Ti3₃iC₂ и Cr₂AlC получали с использованием метода самораспространяющегося высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной микроскопии (SEM).
|
| issn |
2223-3938 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/63234 |
| citation_txt |
Diamond-max ceramics bonding phase composites – phases and microstructure analysis / L. Jaworska, P. Klimczyk, P. Putyra, M. Rozmus, M. Bucko, J. Morgiel, L. Stobierski // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. — К.: ІНМ ім. В.М. Бакуля НАН України, 2011. — Вип. 14. — С. 202-207. — Бібліогр.: 6 назв. — рос. |
| work_keys_str_mv |
AT jaworskal diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis AT klimczykp diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis AT putyrap diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis AT rozmusm diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis AT buckom diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis AT morgielj diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis AT stobierskil diamondmaxceramicsbondingphasecompositesphasesandmicrostructureanalysis |
| first_indexed |
2025-11-26T01:48:52Z |
| last_indexed |
2025-11-26T01:48:52Z |
| _version_ |
1850607014625935360 |
| fulltext |
Выпуск 14. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА
И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ
202
УДК 621.9:621.762-539.27
L. Jaworska1, Prof., Ph. D., D. Sc.; P. Klimczyk1, Ph. D.; P. Putyra1, Ph. D.; M. Rozmus1, Ph. D.;
M. Bucko2, Prof., Ph.D., D. Sc., J. Morgiel3, Prof., Ph.D., D. Sc., L. Stobierski2, Prof., Ph. D, D. Sc.
1Institute of Advanced Manufacturing Technology, Krakow, Poland
2Department of Advanced Ceramics, University of Science and Technology, Krakow, Poland
3Institute of Metallurgy and Materials Sciences, Polish Academy of Sciences, Krakow, Poland
DIAMOND-MAX CERAMICS BONDING PHASE COMPOSITES – PHASES AND
MICROSTRUCTURE ANALYSIS
The possibility for improving the thermal stability of polycrystalline materials based on diamond
(PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3SiC2 і Cr2AlC
prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts
with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further
consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase
composition and microstructural study of the original compacts and the composites made by X-ray
diffraction (XRD) and scanning electron microscopy (SEM).
Key words: sintering, composite material, diamond, binding phase, phase composition,
microstructure.
Introduction
Commercially available polycrystalline diamond compacts (PCD), consisting of a polycrystalline
diamond-cobalt layer on a WC-Co substrate are used in a drilling and machining applications. Cobalt phase
presence in diamonds layer has strong influence on the thermal resistance decreasing. Thermal stability of a PCD
material can be defined as the resistance to graphitization in an inert atmosphere, at elevated temperatures.
One of the possibilities to increase the thermal resistance of PCD materials is to reduce of the cobalt
content. Another is the diamond compacts manufacturing with non-cobalt bonding phase. They have been
referred to as thermally stable polycrystalline diamond composite TSP sometimes as TSDC. TSP is produced
by using silicon carbide binder or leaching the cobalt component from the surface layers of PCD. Diamond-
silicon carbide composites find a wide use in industry application.
The most popular method of obtaining this composite is infiltration of diamond with Si and
consequent reaction of Si with the carbon from diamond. During the sintering process silicon forms SiC
carbide. The SiC formation is connected with volume increase, which could result in blocking of pore
channels what has influence on materials porosity and roughness of the tools surface [1]. The earliest known
product in this type of material was De Beer’s (now Element Six) Syndax 3. This material is characterized
the thermal stability up to 1200 °C, high value of the fracture toughness but lower strength and wear
resistance than PCD with cobalt. Residual silicon was observed in these samples, it can be concluded that the
reactive bonding-sintering process did not proceed to completion [2]. Cuttability of tool materials it is very
important property, especially for diamond because diamond it is non-electrical conductive. For diamond
with cobalt bonding phase the electro-discharge method of cutting is widely using. The traditional
mechanical methods of cutting are not efficient.
Another is the preparing of material with non-metallic bonding phase without negative influences on
diamond graphitization and with compatibility of the thermal expansion coefficient to the diamond
coefficient. Therefore, a new material characterized by at least as good wetting of diamond but producing
synthesis reaction products both less brittle and chemically stable at even higher temperatures then those
containing cobalt would be of interest. PCDs with a silicon bonding phase may be used only in drilling
applications. In such a situation, the development of new bonding phases is very much needed. There is
some new information about application minerals bonding phases for example CaCO3 [3].
The aim of this study is to analyze the possibility of the application of SHS-synthesized powders
from Ti-Si-C and Cr-Al-C systems as a binding phase for PCDs. Ternary compounds (MAX phases)
Mn + 1AXn, n = 1–3, where M – an rare transition metal; A – an element of the A group such as IIIA or
IVA; X – carbon or nitrogen) have been studied since the 1960s. Ti3SiC2 based on MN+1AXN «nanolami-
nates» might make an interesting bonding phase alternative. It is stable up to 1400–1450 °C [4], has a
РАЗДЕЛ 2. ИНСТРУМЕНТАЛЬНЫЕ, КОНСТРУКЦИОННЫЕ И ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ
НА ОСНОВЕ АЛМАЗА И КУБИЧЕСКОГО НИТРИДА БОРА
203
hexagonal P63/mmc layered structure and combines the high stiffness of ceramic materials with some
ductility characteristic for metals. Cr2AlC, one of the M2AX phases (also known as the 211 phase), has
relatively low hardness (3.5–5.5 GPa), high elastic modulus (278–288 GPa), good mechanical performance
at room temperature (flexural strength of 378–494 MPa and compressive strength of 625–1159 MPa), good
electrical ((1.4–2.3) × 106 Ω− 1 m− 1) and thermal conductivity (17.5–22.5 W/(m×K)), excellent oxidation
resistance at 800–1300 °C and corrosion resistance against molten Na2SO4 at 900–1000 °C [4].
Generally, Mn+1AXn phases possess high stiffness; are machinable; exhibit good damage tolerance,
excellent thermal shock resistance, good corrosion resistance, good thermal and electrical conductivity, good
oxidation and/or corrosion resistance, and excellent mechanical performance both at room temperature and
high temperatures. The latter properties enable MAX phases to fill most voids between compacted diamond
or cBN crystallites [5, 6]. It is possible to replace the ductile cobalt bonding phase. Ti3SiC2 or Cr2AlC
materials fill the voids between diamond particles and because their ductile properties preserve the isostatic
conditions in sintered diamond [5]. Removal of voids is crucial, as otherwise the diamond particle is only
locally bound with the binder or second diamond, keeping the diamond in a compressive force state, i. e.
preserving diamond stability. The simultaneous presence of multiple voids leads to a tensile force state on
the diamond surface, leading to its local graphitization.
Experimental
The SHS bonding phases were produced from stoichiometric mixtures of powders. Purity and grain
size of the element powders are shown in Table.
Powder characteristics
Element Purity , % Grain size, μm
Silicon* 99.80 0–60
Titanium (Goodfellow) 99.50 < 45
Graphite (Aldrich) 99.99 < 45
Chromium (AEE) 99.95 < 45
Aluminium (NPA, Kawina) 99.50 Submicrometer
*Obtained by milling of silicon waste chips produced by ZA Tarnow, Poland
The homogeneity of these mixtures was ascertained through extensive mixing of their components
for 12 hours in a rotary-vibratory mill with Teflon balls, suspended in anhydrous isopropyl alcohol. Drying
was carried out during mixing. Next, the powders were formed into discs by pressing in a steel matrix, and
synthesized using the SHS technique. The reaction was begun at up to 1500 °C, using a graphite crucible
with a graphite foil lining in an argon-filled chamber. After ignition by raising part of material to high tem-
perature, the front of reaction is propagated across the crucible, resulting in full transformation of the loaded
material. The products of the SHS reaction were crushed in an Abbich mortar to a powder with grain size up
to 0.5 mm, and then milled in a rotary-vibratory mill with WC grinding media, in anhydrous isopropyl alco-
hol, to a powder with a specific surface area up to 10 m2/g.
Mixtures were prepared containing 80 mass % diamond (3–6 μm MDA, Element Six), 20 mass %
Ti3SiC2.
Diamond powders of 3–6 μm (MDA, Element Six) mechanically mixed with 20 mass% of bonding
phase powders from the Cr-Al-C system were also obtained.
Density was measured using the hydrostatic method. Phase composition of the SHS powders and sin-
tered bodies was identified by X-ray diffraction analysis, based on the ICDD database. XRD measurements
were taken using an X¢Pert Pro system (Panalytical) with monochromatic CuKα1 radiation. Microstructure
investigations were performed using transmission (Tecnai FEG 200 kV) microscope. The resulting mixture
was formed into discs (Æ = 15 mm, h = 5 mm) by pressing in a steel matrix under pressure of 200 MPa. Be-
fore sintering, powders were baked at 600 ºC for 30 min under pressure 0.8 Pa. Samples were heated using
an assembly equipped with an internal graphite heater. Compacts were sintered at pressure 8.0±0.2 GPa and
temperature 1920±50 °C in a Bridgman-type toroid high pressure apparatus.
Results and discussion
X-ray analysis of the Ti-Si-C SHS product shows the presence of 47.1 vol. % Ti3SiC2, TiSi2, TiC and
SiC. XRD patterns are shown in fig. 1.
Выпуск 14. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА
И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ
204
X-ray analysis of the second SHS product from the Cr-Al-C system (fig. 2) shows the presence of
85.2 vol. % Cr2AlC and 14.8 vol. % Cr7C3.
Fig. 1. X-ray pattern of SHS product for the Ti-Si-C system
Fig 2. X-ray pattern of SHS product for the Cr-Al-C system
РАЗДЕЛ 2. ИНСТРУМЕНТАЛЬНЫЕ, КОНСТРУКЦИОННЫЕ И ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ
НА ОСНОВЕ АЛМАЗА И КУБИЧЕСКОГО НИТРИДА БОРА
205
Fig. 3. X-ray pattern of diamond composite with the bonding phase from the Ti-Si-C system
Fig. 4. X-ray pattern of diamond composite with the bonding phase from the Cr-Al-C system
Выпуск 14. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА
И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ
206
X-Ray analysis and TEM microscopy confirmed the fine crystalline character of the binding
material. Fig. 1 shows that the bonding has a multi-phase character, containing SiC, TiC and possibly TiSi2
crystallites. The presence of a ductile Ti3SiC2 bonding phase in the HP–HT process is especially important
in the first stage of the sintering process, when the pressure is generated. The stress distribution in the
sintering samples is dependent on the bonding phase distribution and plasticity. The second stage of the HP-
HT process is sintering. If the sample is not under pseudo-isostatic conditions, then graphite appears.
Hexagonal Ti3SiC2 is a low-temperature phase stable below 1400–1450 ºC. Above these temperatures,
decomposition of Ti3SiC2 occurs and phase reactions take place with the carbon from the diamond (fig. 3).
The ductile behavior of the Ti3SiC2 phase helps to fill most of the larger voids between diamond grains,
ensuring thermodynamic conditions for maintaining the presence of diamond, i. e. limiting major graphite
presence in the final composite.
a b
Fig. 5. TEM image of: a – diamond-20 mass % Ti3SiC2 composite; b – diamond-20 mass % Cr2AlC
composite (area of the bonding phase). The diamond crystallites are characterized by their light contrast
Cr2AlC is a more thermally stable material than Ti3SiC2. This has an influence on the graphitization
process for a diamond-Cr2AlC composite. Such materials are characterized by residual porosity, dark places
along diamond-bonding phase border (fig.5, b). The Cr2AlC phase is insufficient to fill most of the larger voids
between diamond grains but there is a graphite presence in the final composite (fig. 4). The amount of graphite
in this composite, calculated from the X-ray diffraction, is 6.1%. For both systems, the SHS products are multi-
composite compounds. Bonding phases for both composite are composed of fine crystallites.
Conclusions
1. The ductile behaviour of the Ti3SiC2 phase helped to fill most of the larger voids between diamond
grains, ensuring thermodynamic conditions for maintaining the presence of diamond, i.e. limiting major
graphite presence in the final composite. During the sintering process there is Ti3SiC2 decomposition and
carbides, silicides forming.
2. The main factor lowering the hardness of diamond with a binder from the Cr-Al-C system is the
presence of graphite. This indicates a graphitization process during sintering and the presence of tensile
stresses in the sintering mixture. For this composite there is residual porosity in the composite.
3. On the sintering process result the significant influence has the temperature of MAX decomposition.
Acknowledgment
This work was supported in the 2007-2013 Innovative Economy Programme under the National
Strategic Reference Framework EU, priority axis 1, section 1.1.3 N UDA-POIG.01.03.01-12-024/08-00, 26
March 2009.
РАЗДЕЛ 2. ИНСТРУМЕНТАЛЬНЫЕ, КОНСТРУКЦИОННЫЕ И ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ
НА ОСНОВЕ АЛМАЗА И КУБИЧЕСКОГО НИТРИДА БОРА
207
Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі
алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами
Ti3SiC2 і Cr2AlC отримували з використанням методу само поширюваного високотемпературного
синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і
температури з метою подальшої консолідації структури шляхом спікання. Процес спікання
здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних
компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і
скануючої електронної мікроскопії (SEM).
Ключові слова: спікання, композиційний матеріал, алмаз, зв’язувальна фаза, фазовий склад,
мікроструктура.
Одна из возможностей повышения термостойкости поликристаллических материалов на
основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без
кобальта с фазами Ti3SiC2 и Cr2AlC получали с использованием метода самораспространяющегося
высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз
подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации
структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С.
Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов
выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной
микроскопии (SEM).
Ключевые слова: спекание, композиционный материал, алмаз, связующая фаза, фазовый
состав, микроструктура.
References
1. Mlungwane K., Sigalas I.J., Hermann M. The development of a diamond –silicon carbide composite
material // Industrial Diamond Review. – 2005. – N 4. – P. 62–65.
2. Boland J.N., Xing S.Li. Microstructural characterisation and wear behaviour of diamond composite
materials // Materials. – ISSN 1996–1944. – 2010. – P. 1391–1419.
3. Westraadt J.E., Dubrovinskaia N. Thermally stable polycrystalline diamond sintered with calcium
carbonate // Diamond Relat. Mater. – 2007. – N 16. – P. 1929–1935.
4. Barsoum M.W. MN+1AXN phases: new classes of solids thermodynamically stable nanolaminates //
Prog. Solid State Chem. – 2000. – N 28. – P. 201–281.
5. Jaworska L., Szutkowska M., Morgiel J., Stobierski L., Lis J. Ti3SiC2 as a bonding phase in
diamond composites // J. Mater. Sci. – 2001. – N 20. – P. 1783–1786.
6. Benko E., Klimczyk P., Mackiewicz S., Barr T.L., Piskorska E. cBN-Ti3SiC2 composites //
Diamond Relat. Mater. – 2004. – Vol. 13, N 3. – P. 521–525.
Поступила 07.06.11
|