Morse-Bott functions on manifolds with semi-free circle action
Let W²ⁿ be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S¹-invariant Morse-Bott functions on W²ⁿ. The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S¹-invariant Morse-Bott functions on W²ⁿ...
Saved in:
| Date: | 2009 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2009
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/6331 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Morse-Bott functions on manifolds with semi-free circle action / V.V. Sharko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 518-523. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-6331 |
|---|---|
| record_format |
dspace |
| spelling |
Sharko, V.V. 2010-02-23T14:53:18Z 2010-02-23T14:53:18Z 2009 Morse-Bott functions on manifolds with semi-free circle action / V.V. Sharko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 518-523. — Бібліогр.: 4 назв. — англ. 1815-2910 https://nasplib.isofts.kiev.ua/handle/123456789/6331 Let W²ⁿ be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S¹-invariant Morse-Bott functions on W²ⁿ. The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S¹-invariant Morse-Bott functions on W²ⁿ. en Інститут математики НАН України Геометрія, топологія та їх застосування Morse-Bott functions on manifolds with semi-free circle action Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Morse-Bott functions on manifolds with semi-free circle action |
| spellingShingle |
Morse-Bott functions on manifolds with semi-free circle action Sharko, V.V. Геометрія, топологія та їх застосування |
| title_short |
Morse-Bott functions on manifolds with semi-free circle action |
| title_full |
Morse-Bott functions on manifolds with semi-free circle action |
| title_fullStr |
Morse-Bott functions on manifolds with semi-free circle action |
| title_full_unstemmed |
Morse-Bott functions on manifolds with semi-free circle action |
| title_sort |
morse-bott functions on manifolds with semi-free circle action |
| author |
Sharko, V.V. |
| author_facet |
Sharko, V.V. |
| topic |
Геометрія, топологія та їх застосування |
| topic_facet |
Геометрія, топологія та їх застосування |
| publishDate |
2009 |
| language |
English |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Let W²ⁿ be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S¹-invariant Morse-Bott functions on W²ⁿ. The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S¹-invariant Morse-Bott functions on W²ⁿ.
|
| issn |
1815-2910 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/6331 |
| citation_txt |
Morse-Bott functions on manifolds with semi-free circle action / V.V. Sharko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 518-523. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT sharkovv morsebottfunctionsonmanifoldswithsemifreecircleaction |
| first_indexed |
2025-12-07T17:38:50Z |
| last_indexed |
2025-12-07T17:38:50Z |
| _version_ |
1850872043261657088 |