Pressure effect on magnetic properties of gadolinium in paramagnetic state

In this report we are mostly focused on refinement of the experimental dependence of the magnetic transition temperature TC on pressure under pure hydrostatic (gaseous) conditions. Unlike previously used methods, we employed a new procedure, based on the measurement of pressure effect on the dc magn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика и техника высоких давлений
Datum:2013
Hauptverfasser: Panfilov, A.S., Grechnev, G.E., Logosha, A.V., Zhuravleva, I.P.
Format: Artikel
Sprache:English
Veröffentlicht: Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/69601
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Pressure effect on magnetic properties of gadolinium in paramagnetic state / A.S. Panfilov, G.E. Grechnev, A.V. Logosha, I.P. Zhuravleva // Физика и техника высоких давлений. — 2013. — Т. 23, № 1. — С. 5-12. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-69601
record_format dspace
spelling Panfilov, A.S.
Grechnev, G.E.
Logosha, A.V.
Zhuravleva, I.P.
2014-10-17T06:47:10Z
2014-10-17T06:47:10Z
2013
Pressure effect on magnetic properties of gadolinium in paramagnetic state / A.S. Panfilov, G.E. Grechnev, A.V. Logosha, I.P. Zhuravleva // Физика и техника высоких давлений. — 2013. — Т. 23, № 1. — С. 5-12. — Бібліогр.: 22 назв. — англ.
0868-5924
PACS: 71.20.Eh, 75.10.Lp, 75.30.Cr, 75.50.Cc, 75.80.+q
https://nasplib.isofts.kiev.ua/handle/123456789/69601
In this report we are mostly focused on refinement of the experimental dependence of the magnetic transition temperature TC on pressure under pure hydrostatic (gaseous) conditions. Unlike previously used methods, we employed a new procedure, based on the measurement of pressure effect on the dc magnetic susceptibility of Gd in the paramagnetic state at temperatures above TC. The dc paramagnetic susceptibility of Gd was measured in the temperature range of 295−365 K and under hydrostatic pressure up to 0.16 GPa, yielding values of the paramagnetic Curie temperature Θ and its pressure derivative. Also we explored a possibility to describe pressure effects on magnetism of Gd within simple mean-field approaches, which are based on ab initio electronic structure calculations. Based on the results of electronic structure calculations within the density functional theory, the experimental behavior of Θ under pressure was described in the framework of mean-field like approach.
Проведены измерения парамагнитной восприимчивости Gd в интервале температур 295−365 K в условиях гидростатического сжатия до 0.16 GPa, что позволило получить значения парамагнитной температуры Кюри Θ и ее производной по давлению. Основываясь на результатах расчетов электронной структуры с использованием теории функционала плотности, было исследовано поведение Θ под давлением в рамках теории среднего поля. С этой целью были вычислены эффективная восприимчивость зонных d-электронов и соответствующие обменные интегралы как функции параметров решетки.
Було виміряно парамагнітну сприйнятливість Gd в інтервалі температур 295−365 K в умовах гідростатичного тиску до 0.16 GPa, що дозволило отримати значення парамагнітної температури Кюрі Θ та її похідної за тиском. На основі результатів розрахунків електронної структури з використанням теорії функціонала густини було досліджено поведінку Θ під тиском у рамках теорії середнього поля. З цією метою були обчислені ефективна сприйнятливість зонних d-станів і відповідні обмінні інтеграли як функції параметрів ґратки.
en
Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
Физика и техника высоких давлений
Pressure effect on magnetic properties of gadolinium in paramagnetic state
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Pressure effect on magnetic properties of gadolinium in paramagnetic state
spellingShingle Pressure effect on magnetic properties of gadolinium in paramagnetic state
Panfilov, A.S.
Grechnev, G.E.
Logosha, A.V.
Zhuravleva, I.P.
title_short Pressure effect on magnetic properties of gadolinium in paramagnetic state
title_full Pressure effect on magnetic properties of gadolinium in paramagnetic state
title_fullStr Pressure effect on magnetic properties of gadolinium in paramagnetic state
title_full_unstemmed Pressure effect on magnetic properties of gadolinium in paramagnetic state
title_sort pressure effect on magnetic properties of gadolinium in paramagnetic state
author Panfilov, A.S.
Grechnev, G.E.
Logosha, A.V.
Zhuravleva, I.P.
author_facet Panfilov, A.S.
Grechnev, G.E.
Logosha, A.V.
Zhuravleva, I.P.
publishDate 2013
language English
container_title Физика и техника высоких давлений
publisher Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
format Article
description In this report we are mostly focused on refinement of the experimental dependence of the magnetic transition temperature TC on pressure under pure hydrostatic (gaseous) conditions. Unlike previously used methods, we employed a new procedure, based on the measurement of pressure effect on the dc magnetic susceptibility of Gd in the paramagnetic state at temperatures above TC. The dc paramagnetic susceptibility of Gd was measured in the temperature range of 295−365 K and under hydrostatic pressure up to 0.16 GPa, yielding values of the paramagnetic Curie temperature Θ and its pressure derivative. Also we explored a possibility to describe pressure effects on magnetism of Gd within simple mean-field approaches, which are based on ab initio electronic structure calculations. Based on the results of electronic structure calculations within the density functional theory, the experimental behavior of Θ under pressure was described in the framework of mean-field like approach. Проведены измерения парамагнитной восприимчивости Gd в интервале температур 295−365 K в условиях гидростатического сжатия до 0.16 GPa, что позволило получить значения парамагнитной температуры Кюри Θ и ее производной по давлению. Основываясь на результатах расчетов электронной структуры с использованием теории функционала плотности, было исследовано поведение Θ под давлением в рамках теории среднего поля. С этой целью были вычислены эффективная восприимчивость зонных d-электронов и соответствующие обменные интегралы как функции параметров решетки. Було виміряно парамагнітну сприйнятливість Gd в інтервалі температур 295−365 K в умовах гідростатичного тиску до 0.16 GPa, що дозволило отримати значення парамагнітної температури Кюрі Θ та її похідної за тиском. На основі результатів розрахунків електронної структури з використанням теорії функціонала густини було досліджено поведінку Θ під тиском у рамках теорії середнього поля. З цією метою були обчислені ефективна сприйнятливість зонних d-станів і відповідні обмінні інтеграли як функції параметрів ґратки.
issn 0868-5924
url https://nasplib.isofts.kiev.ua/handle/123456789/69601
citation_txt Pressure effect on magnetic properties of gadolinium in paramagnetic state / A.S. Panfilov, G.E. Grechnev, A.V. Logosha, I.P. Zhuravleva // Физика и техника высоких давлений. — 2013. — Т. 23, № 1. — С. 5-12. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT panfilovas pressureeffectonmagneticpropertiesofgadoliniuminparamagneticstate
AT grechnevge pressureeffectonmagneticpropertiesofgadoliniuminparamagneticstate
AT logoshaav pressureeffectonmagneticpropertiesofgadoliniuminparamagneticstate
AT zhuravlevaip pressureeffectonmagneticpropertiesofgadoliniuminparamagneticstate
first_indexed 2025-11-25T22:31:35Z
last_indexed 2025-11-25T22:31:35Z
_version_ 1850565752906579968
fulltext Физика и техника высоких давлений 2013, том 23, № 1 © A.S. Panfilov, G.E. Grechnev, A.V. Logosha, I.P. Zhuravleva, 2013 PACS: 71.20.Eh, 75.10.Lp, 75.30.Cr, 75.50.Cc, 75.80.+q A.S. Panfilov, G.E. Grechnev, A.V. Logosha, I.P. Zhuravleva PRESSURE EFFECT ON MAGNETIC PROPERTIES OF GADOLINIUM IN PARAMAGNETIC STATE B. Verkin Institute for Low Temperature Physics and Engineering 47 Lenin Ave., Kharkov 61103, Ukraine Received September 25, 2012 Проведены измерения парамагнитной восприимчивости Gd в интервале темпера- тур 295−365 K в условиях гидростатического сжатия до 0.16 GPa, что позволило получить значения парамагнитной температуры Кюри Θ и ее производной по дав- лению. Основываясь на результатах расчетов электронной структуры с использо- ванием теории функционала плотности, было исследовано поведение Θ под давле- нием в рамках теории среднего поля. С этой целью были вычислены эффективная восприимчивость зонных d-электронов и соответствующие обменные интегралы как функции параметров решетки. Ключевые слова: гадолиний, электронная структура, магнитная восприимчивость, температура Кюри, высокое давление Було виміряно парамагнітну сприйнятливість Gd в інтервалі температур 295−365 K в умовах гідростатичного тиску до 0.16 GPa, що дозволило отримати значення па- рамагнітної температури Кюрі Θ та її похідної за тиском. На основі результатів розрахунків електронної структури з використанням теорії функціонала густини було досліджено поведінку Θ під тиском у рамках теорії середнього поля. З цією метою були обчислені ефективна сприйнятливість зонних d-станів і відповідні обмінні інтеграли як функції параметрів ґратки. Ключові слова: гадоліній, електронна структура, магнітна сприйнятливість, тем- пература Кюрі, високий тиск 1. Introduction Among the heavy rare earth metals, Gd is the only metal which undergoes a para- magnetic−ferromagnetic transition at the highest magnetic ordering temperature TC ≈ ≈ 293 K and remains ferromagnetic (FM) down to liquid helium temperature [1,2]. The half-filled 4f shell of Gd (S = 7/2, L = 0) provides a localized spin-only mag- netic moment. Therefore gadolinium is often considered as a model system, where the localized 4f spin moments are inserted in a sea of the itinerant electrons. It is believed that 4f moments of Gd are ordered in a FM ground state by means of Ruderman-Kittel−Kasuya−Yosida (RKKY)-type exchange interaction [1]. Физика и техника высоких давлений 2013, том 23, № 1 6 A number of experiments have been performed to study the pressure effect on the Curie temperature of Gd (see, for example, [4] and references therein). With increas- ing pressure, the crystal structure of Gd changes in the order HCP → Sm-type → → DHCP → FCC and the first HCP → Sm-type transition occurs at about 2.5 GPa [5]. For pressures below the structural transitions, the Curie temperature of Gd was found to decrease monotonically with increasing pressure at the rate within the range of dTC/dP = −(10.6−17.2) K/GPa [4]. In all cases the value of dTC/dP was estimated from the pressure-induced shift of peculiarities in the temperature depen- dences of various properties at the transition point (resistivity, magnetization, ac susceptibility, etc.). The methods were of different accuracy, which caused the con- siderable scatter of the experimental data. Another possible source of errors is a de- viation from the hydrostatic conditions. The crucial role of stress homogeneity has been revealed in studies of the uniaxial pressure effects on TC. These effects ap- peared to be strongly anisotropic and more pronounced with the stress applied along the c-axis [6,7]. This correlates with the anisotropic nature of the spontaneous mag- netostriction resulted from the thermal expansion data for Gd in FM state [2]. In this report we are focused on refinement of the experimental dependence of TC on pressure using pure hydrostatic (gaseous) conditions. Unlike previously used methods, we employed a new procedure, based on the measurement of pres- sure effect on the dc magnetic susceptibility of Gd in the paramagnetic (PM) state at the temperatures above TC. Also we attempted to describe the pressure effects on magnetism of Gd within a simple mean-field approach, which is based on ab initio electronic structure calculations. 2. Experimental In this study we used the polycrystalline Gd sample of 99.9% purity. The tem- perature dependence of its magnetic susceptibility χ was measured by a Faraday method between 295 and 365 K in magnetic field H = 0.1 T, and a Curie−Weiss behavior χ( ) CT T = −Θ (1) has been revealed at T ≥ 320 K (solid line in Fig. 1). The corresponding values of the paramagnetic Curie temperature and effective magnetic moment were evalu- ated to be Θ ≃ 295 K and μeff = 8.18 ± 0.1μB in agreement with literature data. The χ(P) measurements were performed under helium gas pressure P up to 0.16 GPa at fixed temperatures, T = 325.5, 333.5 and 352.1 K, by a levitation-type magnetometer [8,9], using the spherical sample of about 1 mm in diameter. The relative errors of magnetic measurements under pressure did not exceed 0.1% for the employed magnetic fields close to H ~ 0.1 T. The field was produced by a non-superconducting solenoid with geometrical parameters similar to those of the superconducting coil used originally in Refs. [8,9]. The experimental χ(P) de- pendencies are presented in Fig. 2 and found to be linear, yielding the pressure derivatives dlnχ/dP, which are listed in Table 1. Физика и техника высоких давлений 2013, том 23, № 1 7 Fig. 1. Temperature dependence of the reciprocal magnetic susceptibility for Gd, meas- ured by the Faraday method (○). The data obtained with the levitation method at ambient pressure are represented by black squares. The Curie−Weiss fit is indicated by the solid line Fig. 2. Pressure dependencies of the magnetic susceptibility of Gd normalized to its value at P = 0 at different temperatures, K: ○ − 325.5, □ − 333.5, ◑ − 352.1 Table 1 Magnetic susceptibility χ and its pressure derivative dlnχ/dP for Gd at different temperatures T, K χ, 10−3 emu/mole dlnχ/dP, 10−2 GPa−1 325.5 269.1 −47.5 ± 1.5 333.5 215.7 −38.5 ± 1.5 352.1 145.5 −28.0 ± 1.5 Based on the Curie−Weiss behavior of χ(T), the dlnχ/dP is assumed to be pre- dominantly governed by the pressure dependence of the paramagnetic Curie tem- perature Θ: ( ) dlnχ dln 1 d χ d d d d d C P P T P C P Θ Θ = + ≈ −Θ (2) where the Curie constant C is close to that of free Gd3+ ion value and expected to be pressure independent. According to Eq. (2), the value of pressure derivative of Θ was evaluated from a slope of the linear approximation of the dlnχ/dP vs χ de- pendence in Fig. 3. The derivative was found to be dΘ/dP = −14.9 ± 0.3 K/GPa, which is in excellent agreement with the most reliable data for polycrystalline sample of Gd from Ref. [10], dTC/dP = −14.8 ± 0.2 K/GPa. Using the experi- mental bulk modulus value B = 39 ± 1 GPa for Gd [11], one obtains the corre- sponding volume derivative, dlnΘ/dlnV = 1.97 ± 0.08. Физика и техника высоких давлений 2013, том 23, № 1 8 3. Computational details and results In order to analyze the experimental data on the pressure effects, the volume- dependent electronic structures and magnetic properties of Gd were calculated ab initio. For these calculations we employed a full-potential relativistic linear muf- fin-tin orbital method (FP-LMTO, code RSPt [12−14]), and also the LMTO method in atomic sphere approximation (LMTO-ASA code, see Refs. [15,16]. The local spin density approximation (LSDA) of Ref. [17] was employed. In the FP-LMTO calculations the basis set for Gd included 6s, 6p, 5d, and 5p orbitals, with the 5p orbitals treated as pseudo-valence states. In both FP-LMTO and LMTO-ASA approaches, the 4f states were treated fully relativistically as spin polarized open core states, which contribute to the total spin density, but do not hybridize with conduction electrons. The use of this approach was justified by successful description of the FM ground state and the Fermi surface of HCP Gd [18,19]. In the framework of a simple mean-field theory (see Refs. [15,16,20] and ref- erences therein), the Curie temperature of the rare-earth metal can be described by a functional relation of the form: ( ) ( )2ef 2 B C 4 5χ 1 1f f d Jdk T J g J J∝ − + . (3) Here effχd is the effective d-band spin susceptibility, gJ is the Lande factor, J4f5d is the local 4f-5d exchange integral: ( ) 2 2 4 5 4 5( ) φ ( ) φ ( ) df d f dJ g p r r r r= ∫ , (4) where ϕ4f(r) and ϕ5d(r) are the partial wave functions, and g(ρ(r)) is a functional of the electronic density [17]. In this work we used Eq. (3) in order to determine whether the simple mean-field theory is relevant to describe experimental data on the pressure effects on TC in Gd. In order to evaluate the effective d-band suscep- tibility entering Eq. (3), we carried on ab initio calculations of the exchange en- hanced spin susceptibility for Gd in the PM state. Within a modified FP-LMTO Fig. 3. Dependence of the pressure deriva- tive dlnχ/dP for Gd on the corresponding magnetic susceptibility at different tem- peratures Физика и техника высоких давлений 2013, том 23, № 1 9 method [13], the effect of external magnetic field H was taken into ac- count by means of the Zeeman opera- tor ( )ˆˆ2 1H s + included in the FP- LMTO Hamiltonian. The self-consistent calculations of the field-induced spin and orbital magnetic moments were carried out in an external magnetic field of 10 T. That allowed determining of the corresponding contri- butions χspin and χorb to the paramagnetic susceptibility. These calculations were performed for a number of lattice pa- rameters a close to the experimental one. This provided the behavior of χspin and χorb in Gd for varying atomic volumes at the fixed experimental HCP lattice pa- rameters ratio, c/a = 1.59. The results of calculations are shown in Fig. 4. It should be noted that the calcu- lated total paramagnetic susceptibility of Gd, χ = χspin + χorb ≈ 142·10–6 emu/mole, cor- responding to the experimental lattice parameters at ambient pressure, is consistent with the experimental room temperature values of χ for related series of metallic Y, La and Lu which amount (in the same units) to 190, 100 and 180, respectively [21]. Based on the calculated dependence χspin(V) for PM Gd, the pressure derivative of χspin was evaluated and compiled in Table 2. In order to convert the calculated volume derivative into the pressure one, we used the experimental bulk modulus value for Gd (B = 39 GPa [11]). For calculation of the pressure dependence of the local J4f5d exchange integral (4) of Gd, we employed the atomic sphere approximation (LMTO-ASA) within the open core approach for 4f states of Gd, in line with Refs. [15,16]. The calcu- lated J4f5d is about 7·10–3 Ry, and its pressure derivative is also listed in Table 2. Table 2 Pressure derivatives of magnetic parameters for Gd Derivative, 10−2 GPa−1 Calculated dlnχspin/dP = –7.3 dlnJ4f5d/dP = 1.3 dlnTC/dP = −4.7 Experimental dlnΘ/dP = −5.05 ± 0.10 (present work) dlnTC/dP = −4.78 ± 0.07 (single crystal) [10] dlnTC/dP = −5.05 ± 0.07 (polycrystal) [10] Note. Calculations are done for the PM state. Fig. 4. Calculated dependencies of the main contributions to the magnetic suscep- tibility of Gd on the atomic volume. Arrow marks the experimental value of volume at ambient pressure Физика и техника высоких давлений 2013, том 23, № 1 10 4. Discussion According to Eq. (3), the pressure dependence of the Curie temperature of Gd can be represented as: 4 5 spinC dln dlnχdln 2 d d d f dJT P P P = + . (5) By substituting in Eq. (3) the calculated pressure derivatives of J4f5d and χspin from Table 2, we obtained theoretical estimations of dlnTC/dP, which are also given in Table 2. The estimated value dlnTC/dP = −4.7·10−2 GPa−1 is in agreement with the present experimental value dlnΘ/dP = −(5.05 ± 0.10)·10−2 GPa−1, as well as with the literature data (see Table 2). This supports the validity of the func- tional relation (3). The agreement also points to a predominant participation of the itinerant 5d-electrons in the indirect exchange interaction for Gd. Therefore, the magnetic ordering and peculiar magnetic properties of Gd can be hardly explained within the simple RKKY coupling scheme. The obtained pressure derivative for the paramagnetic Curie temperature of Gd can be used for evaluation of a spontaneous volume change due to magnetic or- dering, / ω ( )mV V TΔ ≡ , which is related to the squared molar magnetic moment M2(T) (see Ref. [22] and references therein): 2ω ( ) ( )m cT M T B = . (6) Here B is the bulk modulus, and c is the magnetoelastic coupling constant. The latter can be determined for PM Gd within the phenomenological relation [22]: 1 d nχ 2 χ d c l B V P = − , (7) where χ and V are the molar susceptibility and volume, respectively. From Eq. (2) it follows: 1 dlnχ 1 d χ d dP C P Θ = . (8) By using the experimental values of dΘ/dP = −14.9 K/GPa, the Curie constant C = 8.36 K·emu/mole and V = 19.9 cm3, one estimates c/B value to be equal ( ) ( ) 2121 d 4.4 0.3 10 emu/mole 2 d c B VC P −−Θ = − = ± ⋅ . (9) The substitution of the evaluated c/B value and the experimental molar magnetic moment of Gd at T → 0, M(0) ≈ 4.2·104 emu/mole (7.63μB per Gd atom [3]), in Eq. (6) yields the volume change under magnetic transition to be ωm(0) ~ 0.8%. This estimate reasonably agrees with the experimental value ωm(0) ~ 0.5%, which resulted from the thermal expansion measurements for Gd [2]. It can be noted, that our ab initio calculations of the difference between equilibrium atomic volu- Физика и техника высоких давлений 2013, том 23, № 1 11 mes for FM and PM states of Gd ((VFM – VPM)/VFM ≈ 0.7%) also provided a qualitative agreement with the experimental value of magnetovolume effect. 5. Summary Measurements of the pressure effect on magnetic susceptibility of Gd in its PM state provided a new experimental method to study the pressure dependence of the Curie temperature. The ab initio calculated spin susceptibility and exchange inte- gral were employed to analyze pressure dependence of magnetic properties of Gd within the mean-field approach (3). By this way the reasonable description of the observed uniform pressure effect on TC was obtained, indicating the decisive role of 5d-electrons in the indirect exchange interaction. However, the mean-field approach (3) leads to overestimated values of TC. This disagreement is probably related to the assumption that only non-magnetic spin-degenerate states are present above TC. Also spin fluctuations are obviously of a substantial significance in determining the magnetic properties of heavy rare- earth systems with ferromagnetic ordering. The magnetovolume effect studies can be applied in future investigations as a useful tool for identification in magnetic systems of the hierarchies of exchange interactions and effects of the magnetic moments disorder. The recent theoretical approaches, using a Monte Carlo simulation [19], seem promising, but require further exploration to shed light on the nature of magnetism and its pressure de- pendence in the rare-earth systems. 1. J. Jensen, A.R. Mackintosh, Rare Earth Magnetism, Clarendon, Oxford (1991). 2. A. Lindbaum, M. Rotter, in: Handbook of Magnetic Materials, K.H.J. Buschow (Ed.), Elsevier, Amsterdam (2002), vol.14, chap. 5, p. 3. 3. L. Roeland, G.J. Cock, F.A. Muller, A.C. Moleman, K.A. McEwen, R.G. Jordan, D.W. Jones, J. Phys. F: Met. Phys. 5, L233 (1975). 4. D.D. Jackson, V. Malba, S.T. Weir, Phys. Rev. B71, 184416 (2005). 5. D.B. McMhan, A.L. Stevens, Phys. Rev. 139, A682 (1965). 6. H. Bartholin, D. Bloch, Phys. Rev. 188, 845 (1969). 7. H. Bartholin, J. Beille, D. Bloch, P. Boutron, J.L. Feron, J. Appl. Phys. 42, 1679 (1971). 8. A.S. Panfilov, Yu.Ya Pushkar’, Physics and Technics of High Pressures 8, № 3, 5 (1998) (in Russian). 9. A.S. Panfilov, Yu.Ya. Pushkar’, Low Temp. Phys. 28, 789 (2002). 10. H. Bartholin, D. Bloch, J. Appl. Phys. 39, 889 (1968). 11. T.E. Scott, in: Handbook on the Physics and Chemistry of Rare Earths-Metals, K.A. Gschneidner, Jr., L. Eyring (Eds.), Elsevier, Amsterdam (1978), vol. 1, chap. 8, p. 591. 12. J.M. Wills, M. Alouani, P. Andersson, A. Delin, O. Eriksson, A. Grechnev, Full- Potential Electronic Structure Method, Springer, Berlin, (2010). 13. G.E. Grechnev, R. Ahuja, O. Eriksson, Phys. Rev. B68, 64414 (2003). 14. G.E. Grechnev, Low Temp. Phys. 35, 638 (2009). Физика и техника высоких давлений 2013, том 23, № 1 12 15. L. Severin, T. Gasche, M.S.S. Brooks, B. Johansson, Phys. Rev. B48, 13547 (1993). 16. K.H.J. Buschow, G.E. Grechnev, A. Hjelm, Y. Kasamatsu, A.S. Panfilov, I.V. Svechkarev, J. Alloys Compd. 244, 113 (1996). 17. U. von Barth, L. Hedin, J. Phys. C5, 1629 (1972). 18. A.C. Jenkins, W.M. Temmerman, R. Ahuja, O. Eriksson, B. Johansson, J. Wills, J. Phys.: Condens. Matter 12, 10441 (2000). 19. S. Khmelevskyi, T. Khmelevska, A.V. Ruban, P. Mohn, J. Phys.: Condens. Matter 19, 326218 (2007). 20. M. Richter, J. Phys. D: Appl. Phys. 31, 1017 (1998). 21. F.H. Spedding, J.J. Croat, J. Chem. Phys. 59, 2451 (1973). 22. T.F.M. Kortekaas, J.J.M. Franse, J. Phys. F: Met. Phys. 6, 1161 (1976). A.S. Panfilov, G.E. Grechnev, A.V. Logosha, I.P. Zhuravleva PRESSURE EFFECT ON MAGNETIC PROPERTIES OF GADOLINIUM IN PARAMAGNETIC STATE Gadolinium is usually considered as a model system, where the half-filled 4f shell provides localized spin-only magnetic moments, which are widely believed to be ordered by means of RKKY type exchange interaction. However, among the heavy rare earth metals, Gd is the only metal which is ferromagnetic down to the liquid helium tempera- ture, and this is not described by the RKKY theory. It is also surprising, that in HCP Gd the easy axis of low temperature magnetization is directed at an angle about 20° from the c-axis, exhibiting the preferred orientation of the magnetization. With increasing pressure, the crystal structure of Gd changes in the order HCP-(Sm-type)-DHCP-FCC. Therefore, further detailed experimental and theoretical studies of high pressure effects on magnetic properties and phase transitions in gadolinium (and other rare earths) are required to shed more light on mechanisms of magnetic ordering and electronic structure transformations, the nature and extent of which are not clear. In this report we are mostly focused on refinement of the experimental dependence of the magnetic transition temperature TC on pressure under pure hydrostatic (gaseous) con- ditions. Unlike previously used methods, we employed a new procedure, based on the measurement of pressure effect on the dc magnetic susceptibility of Gd in the paramag- netic state at temperatures above TC. The dc paramagnetic susceptibility of Gd was meas- ured in the temperature range of 295−365 K and under hydrostatic pressure up to 0.16 GPa, yielding values of the paramagnetic Curie temperature Θ and its pressure derivative. Also we explored a possibility to describe pressure effects on magnetism of Gd within simple mean-field approaches, which are based on ab initio electronic structure calcula- tions. Based on the results of electronic structure calculations within the density func- tional theory, the experimental behavior of Θ under pressure was described in the frame- work of mean-field like approach. Keywords: gadolinium, electronic structure, magnetic susceptibility, Curie temperature, high pressure