Оптимизационная модель управления ресурсами коммерческого банка

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Ломакина, И.Н., Землячёв, С.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Кримський науковий центр НАН України і МОН України 2009
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/7057
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Оптимизационная модель управления ресурсами коммерческого банка / И.Н. Ломакина, С.В. Землячёв // Культура народов Причерноморья. — 2009. — № 164. — С. 112-117. — Бібліогр.: 9 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-7057
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-70572025-02-09T14:24:09Z Оптимизационная модель управления ресурсами коммерческого банка Оптимізаційна модель управління ресурсами комерційного банку Optimising model of resource management of commercial bank Ломакина, И.Н. Землячёв, С.В. Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ 2009 Article Оптимизационная модель управления ресурсами коммерческого банка / И.Н. Ломакина, С.В. Землячёв // Культура народов Причерноморья. — 2009. — № 164. — С. 112-117. — Бібліогр.: 9 назв. — рос. 1562-0808 https://nasplib.isofts.kiev.ua/handle/123456789/7057 336.7; 519.7; 519,8 ru application/pdf Кримський науковий центр НАН України і МОН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ
Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ
spellingShingle Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ
Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ
Ломакина, И.Н.
Землячёв, С.В.
Оптимизационная модель управления ресурсами коммерческого банка
format Article
author Ломакина, И.Н.
Землячёв, С.В.
author_facet Ломакина, И.Н.
Землячёв, С.В.
author_sort Ломакина, И.Н.
title Оптимизационная модель управления ресурсами коммерческого банка
title_short Оптимизационная модель управления ресурсами коммерческого банка
title_full Оптимизационная модель управления ресурсами коммерческого банка
title_fullStr Оптимизационная модель управления ресурсами коммерческого банка
title_full_unstemmed Оптимизационная модель управления ресурсами коммерческого банка
title_sort оптимизационная модель управления ресурсами коммерческого банка
publisher Кримський науковий центр НАН України і МОН України
publishDate 2009
topic_facet Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ
url https://nasplib.isofts.kiev.ua/handle/123456789/7057
citation_txt Оптимизационная модель управления ресурсами коммерческого банка / И.Н. Ломакина, С.В. Землячёв // Культура народов Причерноморья. — 2009. — № 164. — С. 112-117. — Бібліогр.: 9 назв. — рос.
work_keys_str_mv AT lomakinain optimizacionnaâmodelʹupravleniâresursamikommerčeskogobanka
AT zemlâčëvsv optimizacionnaâmodelʹupravleniâresursamikommerčeskogobanka
AT lomakinain optimízacíjnamodelʹupravlínnâresursamikomercíjnogobanku
AT zemlâčëvsv optimízacíjnamodelʹupravlínnâresursamikomercíjnogobanku
AT lomakinain optimisingmodelofresourcemanagementofcommercialbank
AT zemlâčëvsv optimisingmodelofresourcemanagementofcommercialbank
first_indexed 2025-11-26T20:06:34Z
last_indexed 2025-11-26T20:06:34Z
_version_ 1849884775417905152
fulltext Лебедев К.А. ИНТЕГРАЦИЯ УКРАИНЫ В МИРОВОЙ РЫНОК ЗЕРНА 112 3. Мирошникова А.В. Интегрализм как ESSENTIA интеграции // Вестник Финансовой академии. – № 3(27). – М., «Финансы и статистика», 2003. –100 с. 4. Сільське господарство України: Стат. зб. – К.: Держкомстат України, 1991–2007 рр. 5. Скурко Е.В. ВТО: введение в правовую систему/Под ред. В.М. Шумилова. – М.: Финансы и статистика, 2003. – 96 с. 6. Grain: world markets and trade //www.usda.us Ломакина И.Н., Землячёв С.В. УДК 336.7; 519.7; 519,8 ОПТИМИЗАЦИОННАЯ МОДЕЛЬ УПРАВЛЕНИЯ РЕСУРСАМИ КОММЕРЧЕСКОГО БАНКА Введение. Для совершенствования процесса управления ресурсами банка, возможно предложить осу- ществить разработку математической модели. Применение математических методов в процессе управления банком позволит одновременно опериро- вать и пассивами и активами баланса в тесной взаимосвязи и с учетом состояния ликвидности, прибыльно- сти и других факторов. Постановка задачи. Вопросами составления математических моделей при управлении различными финансово-экономическими процессами занимались такие авторы, как Первозванский А. А., Первозванская Т. Н., Капитоненко В. В., Красс М.С., Чупрынов Б.П., Матюшок В.М., Багриновский К.А., Жилкин О.Н., Дихтяр В.И., Шевцова Н.А., Ревинова С.Ю., Строганов Б.Г. [1–6] и др. При решении оптимизационных задач методами математического программирования используется симплексный метод. Сам метод достаточно громоздкий, но в программе Microsoft Office Excel существует инструмент «Поиск решения», который решает подобные сложные задачи и делает оптимизацию доступ- ной для любого пользователя, не посвящённого в математические тонкости. Главной и самой сложной задачей остаётся построение математической модели. В общем виде модель на максимум прибыли можно представить следующим образом [7, с. 53]: max 1    n j jj xcF при следующей системе ограничений:    n j ijij kibxa 1 ;,1, ;,,1, 1 lklkibxa n j ijij   ;,,1, 1 mttlibxa n j ijij   ,,1, njx j  где jx – количество ресурсов, которое распределяется (аккумулируется) в j–е направление размещения (аккумулирования), jia – коэффициенты, учитывающие сущность ограничения, ib – объем средств, кото- рый относится к распределению, jc – доходность (затратность) по j–й статье баланса. Результаты исследования. Рассмотрим на примере построение подобной модели на основе баланса приведённого в таблице 1. Поставим задачу: найти оптимальную структуру баланса банка и вычислить, каким может быть макси- мальный процентный доход. Таблица 1. Сгруппированный баланс банка Наименование статьи на 01.01.2009г., тыс. грн. № АКТИВЫ. 1 Касса и корсчета в банках (х1) 4503184 2 Кредиты, выданные другим банкам (х2) 6257170 3 Выданные кредиты (х3) 64420600 4 Ценные бумаги (х4) 1519078 5 Иные активы (х5) 3465433 ВСЕГО АКТИВОВ 80165465 ПАССИВЫ Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ 113 СОБСТВЕННЫЙ КАПИТАЛ 1 Уставной капитал (у1) 5684882 2 Иные фонды банка (у2) 2700991 Итого собственного капитала 8385873 ОБЯЗАТЕЛЬСТВА 3 Кредиты, полученные от других банков (у3) 9779526 4 Текущие счета субъектов хозяйствования (у4) 8887788 5 Срочные депозиты субъектов хозяйствования (у5) 15906820 6 Текущие счета физических лиц (у6) 5606146 7 Срочные депозиты физических лиц (у7) 27043945 8 Иные пассивы (у8) 4555367 Итого обязательств 71779592 ВСЕГО ПАССИВОВ 80165465 Будем считать, что собственный капитал в оптимальном балансе останется прежним – 8385873 тыс. грн., тогда 56848821 y тыс. грн., 27009912 y тыс. грн. (табл. 1). Коммерческий банк работает с учетом требований действующих законодательных и нормативных ак- тов. Поэтому модель формирования оптимальной ресурсной базы должна учитывать необходимость со- блюдения экономических нормативов регулирования его деятельности. Составим ограничения по известным в анализе банковской деятельности коэффициентам [8, с. 467, 496, 555, 563], используя их нормативные значения в качестве границ (таблица 2): Таблица 2. Составление системы ограничений по нормативам банковской деятельности Коэффициент1) Соответствующие ограничения общ КУр П C КК . (8 – 20%) 1) 08,0)(:)( 8765432121  уууууyyyyy 2) 2,0)(:)( 8765432121  уууууyyyyy О C КК Н  (10–30%) 3) 1,0)(:)( 87654321  уууууyyy 4) 3,0)(:)( 87654321  уууууyyy СК УКК 1 (15 – 70%) 5) 15,0)(: 211  ууy 6) 7,0)(: 211  ууy УК А М общ . (12–20) 7) 12:)( 154321  yxxxxx 8) 20:)( 154321  yxxxxx ЗСПС МБК К п   . 2 (≤25%) 9) 25,0)(: 8765433  уууууyy УК МБК К п . 3  (≤ 6) 10) 6: 13 yy СК МБК К в . 4  (≤ 2) 11) 2)(: 212  уyx ЗСПС МБКвМБКпК    .. 5 (≤ 20%) 12) 2,0)(:)( 7654323  ууууyху . 6 . общА МБКвВЛАК  (≥ 20%) 13) 2,0)(:)( 5432121  xxxxxxx ДВ ВЛАН 4 (≥ 20%) 14) 2,0)(: 641  yyx Ломакина И.Н., Землячёв С.В. ОПТИМИЗАЦИОННАЯ МОДЕЛЬ УПРАВЛЕНИЯ РЕСУРСАМИ КОММЕРЧЕСКОГО БАНКА 114 ДВ ДСК РБСт . (> 1) 15) 00001,1)(:)( 6475  yyyy ДС СКК 7 (15–20%) 16) 15,0)(:)( 7521  ууyy 17) 20,0)(:)( 7521  ууyy . .. общ акр А ВКК  (65–85%) 18) 65,0)(: 543213  хххххx 19) 85,0)(: 543213  хххххx ЗСПС КИПК  8 (≥ 75) 20) 75,0)(:)( 7654343  ууууyxx 1) – Принятые обозначения: КУр.К – коэффициент уровня собственного капитала (СК) в общих пассивах (Побщ.); КН – коэффициент надёжности, О – обязательства; К1 – доля уставного капитала (УК) в собственном; М – мультипликатор капитала, Аобщ. – общие активы; К2 – удельный вес полученных межбанковских кредитов (МБКп.) в объёме привлечённых и заёмных средств (ПС и ЗС); К3 – удельный вес полученных межбанковских кредитов в уставном капитале; К4 – коэффициент максимального размера выданных межбанковских кредитов (МБКв..); К5 – коэффициент зависимости ресурсной базы от привлечённых межбанковских кредитов; К6 – отношение высоколиквидных активов (ВЛА) и выданных межбанковских кредитов к общим акти- вам; Н4 – отношение высоколиквидных активов к обязательствам по текущим счетам, ДВ – депозиты до вос- требования; КСт. РБ – коэффициент стабильности ресурсной базы, ДС – срочные депозиты; К7 – отношение собственного капитала к срочным депозитам; ККр. а. – коэффициент кредитной активности, ВК – выданные кредиты; К8 – коэффициент использования привлечённых и заёмных средств, КИП – кредитно–инвестиционный портфель. В качестве цели, как уже говорилось выше, будем рассматривать максимум чистого процентного дохо- да. Таблица 3. Выдержка из отчёта о финансовых результатах банка Наименование статьи Данные за 4–й квартал 2008 года Чистый процентный доход 3992585 Процентный доход 9059300 Процентные доходы по кредитам, выданным другим банкам 1061522 Процентные доходы по кредитам субъектов хозяйствования 6554589 Процентные доходы по кредитам физических лиц 1204142 Процентные доходы по ценным бумагам 239047 Иные процентные доходы Процентные затраты 5066715 Процентные затраты по кредитам, полученным от других банков 787206 Процентные затраты по средствам субъектов хозяйствования: 1146279 по средствам до востребования субъектов хозяйствования 283421 по срочным средствам субъектов хозяйствования 862858 Процентные затраты по средствам физических лиц 3133231 по средствам до востребования физических лиц 126710 по срочным средствам физических лиц 3006521 Иные процентные затраты – Для составления целевой функции воспользуемся данными таблицы 1 и таблицы 3, рассчитаем доход- ность (в долях единицы) направлений вложений ресурсов банка: Доходность кредитов, выданных другим банкам (х2): 1061522 : 6257170 = 0,170. Доходность выданных кредитов (х3): (6554589 + 1204142) : 64420600 = 0,120. Доходность ценных бумаг (х4): Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ 115 239047/1519078 = 0,157. Затратность источников ресурсов составляет: Затратность по кредитам, полученным от других банков (у3): 787206 : 9779526 = 0,080. Затратность по средствам до востребования субъектов хозяйствования (у4): 283421 : 8887788 = 0,032 Затратность по срочным средствам субъектов хозяйствования (у5): 862858 : 15906820 = 0,054 Затратность по средствам до востребования физических лиц (у6): 126710/5606146 = 0,023 Затратность по срочным средствам физических лиц (у7): 3006521 : 27043945 = 0,111 Получим целевую функцию: .max011.0023.0054.0 032.008.000016.012.017.00 8765 432154321   yyyy yyyyxxxxxF Пусть все знаменатели являются положительными числами, тогда обе части каждого неравенства можно умножить на соответствующий знаменатель и получить модель линейного программирования. При решении задачи линейного программирования с помощью инструмента «Поиск решения», от- дельные статьи сгруппированного баланса получились равными нулю: х5 = 0, у5 = 0, у6 = 0, у8 = 0. Для решения этой проблемы авторами добавлены дополнительные ограничения: 1) 34654335 x ; 2) 159068205 y ; 3) 56061466 y ; 4) 45553678 y . Таким образом, получена математическая модель задачи линейного программирования. Система ограничений: 08765432154321  уууууyyyxxxxx 83858730876543  уууууy 11369764054321  xxxxx 341092923 y 167717462 x 33543492543  xxx 0)(2,0 164  хyy 0)(00001,0 7564  ууyy 5590582075  yy 035,0)(65,0 35421  ххххх 0)(75,0 4376543  xxууyyy 56848821 y 27009912 y 33543492876543  уууууy 6821858454321  xxxxx 075.0)(25.0 387654  yууууу 08,0)(2,0 237654  xyуууу 4192936575  yy 015,0)(85,0 35421  ххххх 34654335 x 159068205 y 56061466 y 45553678 y 00001.0jx , 5,1j 00001.0ky , 8,1k Целевая функция: Ломакина И.Н., Землячёв С.В. ОПТИМИЗАЦИОННАЯ МОДЕЛЬ УПРАВЛЕНИЯ РЕСУРСАМИ КОММЕРЧЕСКОГО БАНКА 116 .max011.0023.0054.0 032.008.000016.012.017.00 8765 432154321   yyyy yyyyxxxxxF При помощи инструмента «Поиск решения» (Рис.1) найдём оптимальную структуру баланса. Рис. 1. Нахождение оптимальной структуры баланса банка. Фактические данные и оптимальный план запишем в таблицу 4: Таблица 4. Оптимальный план и фактические данные сгруппированного баланса АКТИВЫ Фактические данные, тыс. грн. Оптимальный план, тыс. грн. 1 Касса и счёта до востребования (х1) 4503184 2898787 2 Кредиты, выданные другим банкам (х2) 6257170 16771746 3 Выданные кредиты (х3) 64420600 59958992 4 Ценные бумаги (х4) 1519078 9149645 5 Иные активы (х5) 3465433 3465433 ВСЕГО АКТИВОВ 80165465 92244603 ПАССИВЫ СОБСТВЕННЫЙ КАПИТАЛ 1 Уставной капитал (у1) 5684882 5684882 2 Иные фонды банка (у2) 2700991 2700991 Всего собственного капитала 8385873 8385873 ОБЯЗАТЕЛЬСТВА 3 Кредиты, полученные от других банков (у3) 9779526 8748884 4 Текущие счета субъектов хозяйствования (у4) 8887788 8887788 5 Срочные депозиты субъектов хозяйствования (у5) 15906820 15906820 6 Текущие счета физических лиц (у6) 5606146 5606146 7 Срочные депозиты физических лиц (у7) 27043945 39999000 8 Иные пассивы (у8) 4555367 4710092 Всего обязательств 71779592 83858730 ВСЕГО ПАССИВОВ 80165465 92244603 По фактическим данным чистый процентный доход составил 3992585 тыс. грн. (табл. 3), а по опти- мальному плану (при данном уровне доходности и расходности ) – 17894889 тыс. грн., что больше на 13902304 тыс. грн. В структуре пассивов банка целесообразно уменьшить на 1030642 тыс. грн. объемы полученных меж- банковских кредитов, при этом увеличить срочные депозиты физических лиц на 12955055 тыс. грн. В структуре активов больше всего необходимо увеличить вложения в ценные бумаги и в кредиты, выдан- ные другим банкам. Однако, средства в кассе и до востребования в других банках, а так же выданные кре- диты должны быть меньше фактических на 1604397 и 4461608 тыс. грн. соответственно. Заключение Очевидно, что при формировании ресурсной базы банка необходимо предпринимать активные меро- приятия по привлечению средств на денежном рынке, совершенствовать критерии эффективности привле- чения межбанковских кредитов и учитывать необходимость укрепления капитальной базы [9, с. 35]. Предложенная методика обеспечивает достаточный уровень доходности при поддержании приемлемо- Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ 117 го уровня риска и сохранении необходимого для устойчивой работы банка уровня ликвидности. Руководство банка должно рассматривать подобные методы как путь совершенствования процесса принятия решений, но не как замену их собственного опыта суждений. Использование достаточно разрабо- танной модели линейного программирования позволит руководству банка увидеть последствия некоторых его решений. Модель полезна тем, что позволяет использовать преимущество быстрой обработки данных на компь- ютерах для обобщения сложных взаимодействий большого числа переменных, с которыми управляющим банка приходится иметь дело при управлении. Источники и литература 1. Первозванский А. А. Финансовый рынок: расчеты и риск./ А. А. Первозванский, Т. Н. Первозванская – М.: Инфра-М, 1994. – 192с. 2. Капитоненко В. В. Финансовая математика и её приложения: Учебно-практическое пособие для вузов / В. В. Капитоненко – М: ПРИОР, 1998. – 144с. 3. Красс М.С. Математика в экономике. Математические методы и модели / М.С. Красс, Б.П Чупрынов – М.: Финансы и статистика, 2007 г. – 542 с. 4. Матюшок В.М. Экономико–математические методы и модели./ В.М. Матюшок, К.А. Багриновский – М.: РУДН, 2008. – 283 с; 5. Пилипенко А.И. Финансовая математика (моделирование финансовых рынков): учебное пособие./ А.И. Пилипенко. – М.: Изд-во ИНФРА-М, 2007. – 365 с; 6. «Информатика для экономистов»: Учебник / [В.М. Матюшок, О.Н. Жилкин, В.И. Дихтяр, Н.А. Шевцо- ва, С.Ю. Ревинова, Б.Г. Строганов] – М.: ИНФРА–М, 2006. – 880 с; 7. Фомин Г. П. Математические методы и модели в коммерческой деятельности/ Г. П. Фомин – М.: Фи- нансы и статистика, 2001. – 544с. 8. Парасій-Вергуненко І. М. «Аналіз банківської діяльності» Навчально-методичний посібник / І. М. Па- расій-Вергуненко. – К: КНЕУ, 2003. – 347с. 9. Землячев С.В. Некоторые особенности формирования ресурсной базы коммерческих банков в Украине / С.В. Землячев // Культура народов Причерноморья. – 2000. – N12. – С. 33–35. Новик Л.И. СОВРЕМЕННЫЕ ПОДХОДЫ К ОЦЕНКЕ ЭФФЕКТИВНОСТИ УПРАВЛЕНИЯ ТРУДОВЫМ ПОТЕНЦИАЛОМ ПРЕДПРИЯТИЙ ТУРИСТСКО-РЕКРЕАЦИОННОЙ СФЕРЫ В научной литературе утвердилось понятие «трудовой потенциал предприятия», при этом проблема оценки эффективности управления трудовым потенциалом предприятий применительно к конкретной от- расли продолжает оставаться актуальной. Каждая отрасль накладывает свой отпечаток на данную оценку и обусловливает необходимость определения целого ряда количественных показателей, учитывающих спе- цифику функционирования исследуемых предприятий в конкретной отрасли. В этой связи представляет на- учный интерес оценка эффективности управления трудовым потенциалом предприятий туристско- рекреационной сферы, являющейся в современных условиях одной из самых динамичных сфер националь- ной экономики. Следует особо подчеркнуть, что высокие темпы ее развития, большие объемы валютных поступлений активно влияют на различные сектора экономики. Так, например, туристско-рекреационная сфера выступает основой экономики Автономной Республики Крым, формируя на 40 – 50% сводный бюд- жет Крыма [1]. В настоящее время ряд ученых в области управления трудовым потенциалом предприятия склоняются к мнению, что трудовой потенциал применительно к предприятию представляет собой предельную величи- ну возможного участия работников в производстве с учетом их психофизиологических особенностей, уров- ня профессиональных знаний, накопленного опыта при наличии необходимых организационно- технических условий [2]. Зарубежные ученые, которые занимаются проблемами управления, все больше внимания уделяют вопросам взаимосвязи планирования финансов и коммерческой деятельности с пробле- мами управления трудовым потенциалом фирм [3]. Отсюда следует, что оценка эффективности управления трудовым потенциалом рассматривается как в отечественной, так и зарубежной литературе в отрыве от специфики конкретных предприятий либо фирм, функционирующих в той или иной отрасли. Целью данной статьи является определение современных подходов к оценке эффективности управле- ния трудовым потенциалом предприятий туристско-рекреационной сферы. Для достижения этой цели не- обходимо решить ряд задач, среди которых важнейшими являются разработка экономико-математической модели оценки эффективности управления трудовым потенциалом предприятий, а также учет специфики их функционирования в туристско-рекреационной сфере. Подобного рода оценка позволит максимально реализовать потенциальные возможности трудового потенциала предприятий рассматриваемой сферы. Представим рассмотрение данной проблемы на примере ОАО «Гостиничный комплекс «Ялта- Интурист», которое отвечает классификационным требованиям к гостинице категории ***. Данная гости- ница обладает обширной и развитой материальной базой, широким спектром услуг, большим количеством постоянных клиентов, что позволяет данному предприятию быть достаточно конкурентоспособным на