Отбор переменных в логистическую регрессию генетическим алгоритмом

В статье исследуются эффективные процедуры отбора переменных в бинарные классифицирующие модели на основе логистической регрессии. Для этого используется генетический алгоритм, причем в функцию фитнеса особи параметр штрафа за включение в модель новых переменных изменяется в зависимости от рассчи...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Паклин, Н.Б.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем штучного інтелекту МОН України та НАН України 2008
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/7157
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Отбор переменных в логистическую регрессию генетическим алгоритмом / Н.Б. Паклин // Штучний інтелект. — 2008. — № 3. — С. 714-719. — Бібліогр.: 5 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В статье исследуются эффективные процедуры отбора переменных в бинарные классифицирующие модели на основе логистической регрессии. Для этого используется генетический алгоритм, причем в функцию фитнеса особи параметр штрафа за включение в модель новых переменных изменяется в зависимости от рассчитанного значения площади под ROC-кривой. Проведены эксперименты на модельных наборах данных и в задаче кредитного скоринга. У статті досліджуються ефективні процедури відбору змінних в бінарні класифікуючі моделі на основі логістичної регресії. Для цього використовується генетичний алгоритм, причому у функцію фітнеса особини параметр штрафу за включення в модель нових змінних змінюється залежно від розрахованого значення площі під ROC-кривою. Проведені експерименти на модельних наборах даних і в задачі кредитного скорингу. In the paper we discuss effective procedures for а feature selection problem in a binary logistic regression model. A genetic algorithm was used to find best feature combinations, with the special fitness function based on a penalty parameter for including new variables. This parameter depends on ROC-curve index on current epoch. Experiments on Madelon data set and credit scoring classification problem were made.
ISSN:1561-5359